D5641

No. of Printed Pages : 15

MTE-04/MTE-05

BACHELOR'S DEGREE PROGRAMME MTE-04 : ELEMENTARY ALGEBRA

\&
 MTE-05 : ANALYTICAL GEOMETRY

Instructions:

1. Students registered for both MTE-04 \& MTE-05 courses should answer both the question papers in two separate answer books entering their enrolment number, course code and course title clearly on both the answer books.
2. Students who have registered for MTE-04 or MTE-05 should answer the relevant question paper after entering their enrolment number, course code and course title on the answer book.

स्नातक उपाधि कार्यक्रम

एम.टी.ई.-04 : प्रारंभिक बीजगणित
एवं
एम.टी.ई.-05 : वैश्लेषिक ज्यामिति

निर्देश:

1. जो छात्र एम.टी.ई.-04 और एम.टी.ई.- 05 दोनों पाठ्यक्रमों के लिए पंजीकृत हैं, दोनों प्रश्न-पत्रों के उत्तर अलग-अलग उत्तर पुस्तिकाओं में अपना अनुक्रमांक, पाठ्यक्रम कोड तथा पाठ्यक्रम नाम साफ़-साफ़ लिखकर दें।
2. जो छात्र एम.टी.ई.- 04 या एम.टी.ई.- 05 किसी एक के लिए पंजीकृत हैं, अपने उसी प्रश्न-पत्र के उत्तर उत्तर-पुस्तिका में अपना अनुक्रमांक, पाठ्यक्रम कोड तथा पाठ्यक्रम नाम साफ़-साफ़ लिखकर दें ।
MTE-04/05.

BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination

December, 2017

ELECTIVE COURSE : MATHEMATICS MTE-04 : ELEMENTARY ALGEBRA

Time: $1 \frac{1}{2}$ hours

Maximum Marks : 25
(Weightage : 70\%)
Note: Question no. 5 is compulsory. Answer any three questions from questions no. 1 to 4. Use of calculators is not allowed.

1. (a) Let

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

where $a_{i} \in \mathbf{R}$ for $i=0,1, \ldots, n$. If $z \in \mathbf{C}$ is a root of $f(x)$, prove that its conjugate \bar{z} is also a root of $f(x)$.
(b) Prove that for any three subsets A, B and C of a universal set U,

$$
\begin{equation*}
(B \backslash A) \cup(C \backslash A)=(B \cup C) \backslash A . \tag{2}
\end{equation*}
$$

2. (a) Suppose
$x=a+b, y=a \omega+b \omega^{2}$ and $z=a \omega^{2}+b \omega$, where ω is a cube root of unity. Show that

$$
x^{2}+y^{2}+z^{2}=6 a b
$$

(b) Can the following system of equations be solved by Cramer's rule? If yes, then solve it by the rule. Otherwise, apply the Gaussian method for solving it.

$$
\begin{aligned}
& x+2 y-z=3 \\
& 4 x+y-5 z=8 \\
& 5 x-3 y+2 z=7
\end{aligned}
$$

3. (a) Solve the equation

$$
4 x^{3}+12 x^{2}-37 x+15=0
$$

if it is known that one of the roots is thrice the other.
(b) Give the following :
(i) A 2×4 matrix over R
(ii) The transpose of the matrix in (i) above
(iii) A system of linear equations represented by $A X=B$, where A is the matrix in (ii) above and B is a non-zero matrix
4. (a) Prove, by induction, that $x^{2 n}-y^{2 n}$ is divisible by $(\mathrm{x}+\mathrm{y}) \forall \mathrm{n} \in \mathbf{N}$.
(b) Consider a cuboid with dimensions 2 , x and y metres, with $\mathrm{x}+\mathrm{y}$ fixed. Under what conditions on x and y will such a cuboid have maximum volume?
5. Which of the following statements are true and which are false ? Give a short proof or a counter-example to justify your answers. $5 \times 2=10$
(a) For any two sets A and $\mathrm{B}, \mathrm{A} \times \mathrm{B}=\mathrm{B} \times \mathrm{A}$.
(b) If $\mathrm{a}^{2}+\mathrm{b}^{2}=1$ and $\mathrm{x}^{2}+\mathrm{y}^{2}=1, \mathrm{a}, \mathrm{b}, \mathrm{x}, \mathrm{y} \in \mathbf{R}$, then $a \mathrm{x}+\mathrm{by} \leq 1$.
(c) A polynomial over real numbers always has one complex root.
(d) If a matrix B is obtained from a matrix A by interchanging two rows of A, then $|\mathrm{B}|=|\mathrm{A}|$.
(e) The converse of the statement 'If X is a singleton, then $\mathrm{X}=\phi$ ' is the statement 'If $X \neq \phi$, then X must be a singleton'.

स्नातक उपाधि कार्यक्रम
 (बी.डी.पी.)
 सत्रांत परीक्षा
 दिसम्बर, 2017

ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-04 : प्रारंभिक बीजगणित

समय : $1 \frac{1}{2}$ घण्टे अधिकतम अंक : 25 (कुल का : 70\%)

नोट : प्रश्न सं. 5 अनिवार्य है। प्रश्न सं. 1 से 4 में से किन्हीं तीन प्रश्नों के उत्तर दीजिए। कैल्कुलेटरों के प्रयोग करने की अनुमति नहीं है।

1. (क) मान लीजिए

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

जहाँ $\mathrm{a}_{\mathrm{i}} \in \mathbf{R}, \mathrm{i}=0,1, \ldots, \mathrm{n}$ के लिए । यदि $\mathrm{z} \in \mathbf{C}$, $\mathbf{f}(\mathbf{x})$ का एक मूल है, तब सिद्ध कीजिए कि इसका संयुग्मी \bar{z} भी $\mathrm{f}(\mathrm{x})$ का एक मूल होगा ।
(ख) सिद्ध कीजिए कि समष्टीय समुच्चय U के किन्हीं तीन उपसमुच्चयों A, B और C के लिए

$$
(B \backslash A) \cup(C \backslash A)=(B \cup C) \backslash A .
$$

2. (क) मान लीजिए
$x=a+b, y=a \omega+b \omega^{2}$ और $z=a \omega^{2}+b \omega$, जहाँ ω, इकाई (1) का घनमूल है । दिखाइए कि

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=6 a b . \tag{2}
\end{equation*}
$$

(ख) क्या निम्नलिखित समीकरण निकाय को क्रैमर नियम से हल किया जा सकता है ? यदि किया जा सकता है, तो इस नियम से इसे हल कीजिए। अन्यथा, इसे हल करने के लिए गाउसीय विधि का प्रयोग कीजिए।

$$
\begin{aligned}
& x+2 y-z=3 \\
& 4 x+y-5 z=8 \\
& 5 x-3 y+2 z=7
\end{aligned}
$$

3. (क) यदि यह ज्ञात है कि समीकरण

$$
4 x^{3}+12 x^{2}-37 x+15=0
$$

के मूलों में से एक मूल दूसरे मूल का तीन गुना है, तब इस समीकरण को हल कीजिए।
(ख) निम्नलिखित दीजिए :
(i) R पर एक 2×4 आव्यूह
(ii) ऊपर (i) में दिए गए आव्यूह का परिवर्त
(iii) $\mathrm{AX}=\mathrm{B}$ द्वारा निरूपित रैखिक समीकरण निकाय, जहाँ A ऊपर (ii) में दिया गया आव्यूह है और B कोई शून्येतर आव्यूह है
4. (क) आगमन नियम से सिद्ध कीजिए कि $\mathrm{x}^{2 \mathrm{n}}-\mathrm{y}^{2 \mathrm{n}},(\mathrm{x}+\mathrm{y})$ से विभाजित होता है, सभी $\mathrm{n} \in \mathbf{N}$ के लिए।
(ख) एक ऐसा षट्फलक लीजिए जिसकी विमाएँ $2, \mathrm{x}$ और y मीटर हैं, और जहाँ $\mathrm{x}+\mathrm{y}$ नियत है । x और y पर किन प्रतिबंधों के अधीन इस षट्फलक का आयतन अधिकतम होगा ?
5. निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से असत्य ? अपने उत्तरों की पुष्टि के लिए लघु उपपत्ति या प्रत्युदाहरण दीजिए।
(क) किन्हीं दो समुच्चयों A और B के लिए

$$
\mathbf{A} \times \mathbf{B}=\mathbf{B} \times \mathbf{A} .
$$

(ख) यदि $\mathrm{a}^{2}+\mathrm{b}^{2}=1$ और $\mathrm{x}^{2}+\mathrm{y}^{2}=1, \mathrm{a}, \mathrm{b}, \mathrm{x}, \mathrm{y} \in \mathbf{R}$, तब $\mathrm{ax}+\mathrm{by} \leq 1$.
(ग) वास्तविक संख्याओं पर किसी भी बहुपद का हमेशा एक सम्मिश्र मूल होता है ।
(घ) यदि B एक ऐसा आव्यूह है जो आव्यूह A की दो पंक्तियों को आपस में बदलने से प्राप्त हुआ हो, तो $|\mathrm{B}|=|\mathrm{A}|$.
(ङ) कथन 'यदि X एकल है, तब $\mathrm{X}=\phi$ ' का विलोम कथन 'यदि $\mathrm{X} \neq \phi$, तब X एकल होगा' है।

MTEE-05

BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination

December, 2017

ELECTIVE COURSE : MATHEMATICS

MTE-05 : ANALYTICAL GEOMETRY

Time : $1 \frac{1}{2}$ hours
Maximum Marks : 25
(Weightage : 70\%)
Note: Question no. 5 is compulsory. Answer any three questions from questions no. 1 to 4. Use of calculators is not allowed.

1. (a) Find the equation of the plane passing through the points ($1,0,1$), ($2,1,-1$) and $(0,1,0)$.
(b) Obtain the equation of the conic, a focus of which lies at $(2,1)$, the directrix of which is $x+y=0$ and which passes through $(1,4)$. Also identify the conic.
2. (a) Find the equation of the right circular cylinder whose base curve is

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=16, x-y+z=6 \tag{3}
\end{equation*}
$$

(b) Find the new equation of the curve $x^{2}+y^{2}-6 x+2 y+1=0$ by shifting the origin to ($3,-1$) without changing the direction of the axes.
3. (a) Find the equation of the right circular cone whose vertex is $(1,-1,2)$, the axis is

$$
\frac{x-1}{2}=\frac{y+1}{1}=\frac{z-2}{-2} \text { and }
$$

the semi-vertical angle is 45°.
(b) Trace the conic obtained by the intersection of yz -plane with the conicoid

$$
\begin{equation*}
\frac{x^{2}}{4}+\frac{y^{2}}{9}-\frac{z^{2}}{16}=-1 \tag{3}
\end{equation*}
$$

4. (a) Show that if $u x+v y+w z=p$ is a tangent plane to the paraboloid $a x^{2}+b y^{2}=2 z$, then

$$
\begin{equation*}
\frac{\mathrm{u}^{2}}{\mathrm{a}}+\frac{\mathrm{v}^{2}}{\mathrm{~b}}+2 \mathrm{pw}=0 \tag{3}
\end{equation*}
$$

(b) Reduce the following equations to Cartesian form :
(i) $2 \mathrm{r}^{2}(1-\sin 2 \theta)+\mathrm{r} \cos \theta=0$
(ii) $\mathrm{r}^{2}=\frac{4}{2-\sin 2 \theta}$
5. Which of the following statements are true and which are false ? Justify your answers.

$$
5 \times 2=10
$$

(a) The angle between the line $x=y=z$ and the plane $2 x-y+z=1$ is $\sin ^{-1}\left(\frac{\sqrt{2}}{3}\right)$.
(b) The projection of the line segment joining ($2,-1,3$) and $(4,1,0)$ on the x -axis is 2 .
(c) The equation $x^{2}+2 x y+y z+1=0$ represents a central conicoid.
(d) The line $x-1=y=z$ is a tangent to the sphere $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=1$.
(e) The eccentricity of $x^{2}-y^{2}=9$ is 3 .

स्नातक उपाधि कार्यक्रम (बी.डी.पी.)

सत्रांत परीक्षा
दिसम्बर, 2017
ऐच्छिक पाठ्यक्रम : गणित
एम.टी.ई.-05 : वैश्लेषिक ज्यामिति

समय : $1 \frac{1}{2}$ घण्टे
अधिकतम अंक : 25
(कुल का : 70\%)
नोट : प्रश्न सं. 5 अनिवार्य है । प्रश्न सं. 1 से 4 में से किन्हीं तीन प्रश्नों के उत्तर दीजिए । कैल्कुलेटरों के प्रयोग करने की अनुमति नहीं है ।

1. (क) बिंदुओं $(1,0,1),(2,1,-1)$ और $(0,1,0)$ से गुज़रने वाले समतल का समीकरण ज्ञात कीजिए।
(ख) उस शांकव का समीकरण प्राप्त कीजिए जिसकी एक नाभि $(2,1)$ पर स्थित है, जिसक़ी नियता $\mathrm{x}+\mathrm{y}=0$ है और जो बिंदु $(1,4)$ से गुज़रता है । इस शांकव को भी पहचानिए।
2. (क) उस लंब-वृत्तीय बेलन का समीकरण ज्ञात कीजिए जिसका आधार वक्र

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=16, x-y+z=6 \text { है । } \tag{3}
\end{equation*}
$$

(ख) अक्षों को घुमाए बिना मूल-बिंदु को $(3,-1)$ पर स्थानांतरित करके वक्र $\mathrm{x}^{2}+\mathrm{y}^{2}-6 \mathrm{x}+2 \mathrm{y}+1=0$ का नया समीकरण ज्ञात कीजिए।
3. (क) उस लंब-वृत्तीय शंकु का समीकरण ज्ञात कीजिए जिसका शीर्ष $(1,-1,2)$, अक्ष $\frac{x-1}{2}=\frac{y+1}{1}=\frac{z-2}{-2}$ और अर्ध-शीर्ष कोण 45° है ।
(ख) yz -समतल से शांकवज $\frac{\mathrm{x}^{2}}{4}+\frac{\mathrm{y}^{2}}{9}-\frac{\mathrm{z}^{2}}{16}=-1$ के प्रतिच्छेद से प्राप्त शांकव को आरेखित कीजिए ।
4. (क) दिखाइए कि यदि $u x+v y+w z=p$ परवलयज $a x^{2}+b y^{2}=2 z$ का स्पर्श तल है, तो

$$
\frac{\mathrm{u}^{2}}{\mathrm{a}}+\frac{\mathrm{v}^{2}}{\mathrm{~b}}+2 \mathrm{pw}=0 \text { है । }
$$

(ख) निम्नलिखित समीकरणों को कार्तीय रूप में समानीत कीजिए :
(i) $2 \mathrm{r}^{2}(1-\sin 2 \theta)+\mathrm{r} \cos \theta=0$
(ii) $\mathbf{r}^{2}=\frac{4}{2-\sin 2 \theta}$.
5. निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से असत्य ? अपने उत्तरों की पुष्टि कीजिए। $5 \times 2=10$
(क) रेखा $\mathrm{x}=\mathrm{y}=\mathrm{z}$ और समतल $2 \mathrm{x}-\mathrm{y}+\mathrm{z}=1$ के बीच का कोण $\sin ^{-1}\left(\frac{\sqrt{2}}{3}\right)$ है ।
(ख) बिंदुओं $(2,-1,3)$ और $(4,1,0)$ को मिलाने वाले रेखा-खण्ड का x-अक्ष पर प्रक्षेप 2 है।
(ग) समीकरण $\mathrm{x}^{2}+2 \mathrm{xy}+\mathrm{yz}+1=0$ एक केन्द्रीय शांकवज को निरूपित करता है।
(घ) रेखा $\mathrm{x}-1=\mathrm{y}=\mathrm{z}$ गोले $\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}=1$ की स्पशरिखा है।
(ङ) $x^{2}-y^{2}=9$ की उत्केन्द्रता 3 है।

