BIMEE-022

No. of Printed Pages : 3

B.Tech. – VIEP – MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination

BIMEE-022 : OPTIMIZATION FOR ENGINEERING DESIGN

Time : 3 hours

Maximum Marks: 70

Note: Answer any five questions. All questions carry equal marks. Use of scientific calculator is permitted. Assume any suitable data, if missing.

 (a) Explain how and why optimization techniques have been valuable in aiding an executive decision. (b) What do you understand by deterministic and probabilistic models that are used in optimization ? Explain briefly. (a) Differentiate between single and multi-variable optimization giving suitable example. (b) Use the two-phase method to minimize z = x₁ + x₂ subject to 2x₁ + x₂ ≥ 4 x₁ + 7x₂ ≥ 7 x₁, x₂ ≥ 0. 				
 and probabilistic models that are used in optimization? Explain briefly. 2. (a) Differentiate between single and multi-variable optimization giving suitable example. (b) Use the two-phase method to minimize z = x₁ + x₂ subject to 2x₁ + x₂ ≥ 4 x₁ + 7x₂ ≥ 7 	1.	(a)	techniques have been valuable in aiding an	7
(b) Use the two-phase method to minimize $z = x_1 + x_2$ subject to $2x_1 + x_2 \ge 4$ $x_1 + 7x_2 \ge 7$		(b)	and probabilistic models that are used in	7
minimize $z = x_1 + x_2$ subject to $2x_1 + x_2 \ge 4$ $x_1 + 7x_2 \ge 7$	2.	(a)	multi-variable optimization giving suitable	7
$\mathbf{x}_1, \mathbf{x}_2 \ge 0.$		(b)	$\begin{array}{l} \text{minimize} \\ \mathbf{z} = \mathbf{x}_1 + \mathbf{x}_2 \\ \text{subject to} \\ 2\mathbf{x}_1 + \mathbf{x}_2 \ge 4 \\ \mathbf{x}_1 + 7\mathbf{x}_2 \ge 7 \end{array}$	
			$\mathbf{x}_1, \mathbf{x}_2 \ge 0.$	7

BIMEE-022

P.T.O.

- **3.** (a) Explain the graphical method for solving a linear goal programming problem.
 - (b) Using the simplex method, solve the following problem :

Minimize

$$z = -40x_1 - 100x_2$$

subject to

$$10x_1 + 5x_2 \le 250$$

$$2x_1 + 5x_2 \le 100$$

$$2x_1 + 3x_2 \le 90$$

$$x_1, x_2 \ge 0$$

- 4. (a) Explain stochastic processes with suitable examples.
 - (b) Solve the following problem using Big M method:

Maximize

$$z = 6x_1 - 3x_2 + 2x_3$$

subject to

$$2x_1 + x_2 + x_3 \le 16$$

$$3x_1 + 2x_2 + x_3 \le 18$$

$$x_1 - 2x_3 \ge 8$$

$$x_1, x_2, x_3 \ge 0.$$

BIMEE-022

2

7

7

7

7

- 5. (a) Explain the concept of duality in LPP.
 - (b) Solve the following LP problem using Charles' penalty method : 7

Maximize

$$z = 3x_1 - x_2$$

subject to constraints

$$2x_1 + x_2 \ge 2$$
$$x_1 + 3x_2 \le 3$$
$$x_2 \le 4$$
$$x_1, x_2 \ge 0$$

- 6. (a) Discuss the typical characteristics of constrained problem. Explain in brief, direct and indirect methods.
 - (b) Discuss the differences and similarities between GA and traditional method.
- 7. Write short notes on any *two* of the following : 7+7
 - (a) Geometric Programming
 - (b) Goal Programming
 - (c) Dual Linear Programming
 - (d) Optimization Techniques as Tools for Decision-Making

3

BIMEE-022

7

7

7