B.Tech. - VIEP - MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination
 $\square \square \square \square$ December, 2017
 BIMEE-022 : OPTIMIZATION FOR ENGINEERING DESIGN

Time : 3 hours
Maximum Marks : 70
Note: Answer any five questions. All questions carry equal marks. Use of scientific calculator is permitted. Assume any suitable data, if missing.

1. (a) Explain how and why optimization techniques have been valuable in aiding an executive decision.
(b) What do you understand by deterministic and probabilistic models that are used in optimization? Explain briefly.
2. (a) $\begin{aligned} & \text { Differentiate between single and } \\ & \text { multi-variable optimization giving suitable } \\ & \text { example. }\end{aligned}$
(b) Use the two-phase method to minimize

$$
z=x_{1}+x_{2}
$$

subject to

$$
\begin{gather*}
2 x_{1}+x_{2} \geq 4 \\
x_{1}+7 x_{2} \geq 7 \\
x_{1}, x_{2} \geq 0 . \tag{7}
\end{gather*}
$$

BIMEE-022 1
3. (a) Explain the graphical method for solving a linear goal programming problem.
(b) Using the simplex method, solve the following problem :

Minimize

$$
z=-40 x_{1}-100 x_{2}
$$

subject to

$$
\begin{aligned}
& 10 x_{1}+5 x_{2} \leq 250 \\
& 2 x_{1}+5 x_{2} \leq 100 \\
& 2 x_{1}+3 x_{2} \leq 90 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

4. (a) Explain stochastic processes with suitable examples.
(b) Solve the following problem using Big M method :

Maximize

$$
z=6 x_{1}-3 x_{2}+2 x_{3}
$$

subject to

$$
\begin{aligned}
& 2 x_{1}+x_{2}+x_{3} \leq 16 \\
& 3 x_{1}+2 x_{2}+x_{3} \leq 18 \\
& x_{1}-2 x_{3} \geq 8 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

5. (a) Explain the concept of duality in LPP.
(b) Solve the following LP problem using Charles' penalty method :

Maximize

$$
\mathrm{z}=3 \mathrm{x}_{1}-\mathrm{x}_{2}
$$

subject to constraints

$$
\begin{aligned}
& 2 x_{1}+x_{2} \geq 2 \\
& x_{1}+3 x_{2} \leq 3 \\
& x_{2} \leq 4 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

6. (a) Discuss the typical characteristics of constrained problem. Explain in brief, direct and indirect methods.
(b) Discuss the differences and similarities between GA and traditional method.
7. Write short notes on any two of the following: $7+7$
(a) Geometric Programming
(b) Goal Programming
(c) Dual Linear Programming
(d) Optimization Techniques as Tools for Decision-Making
