(BTMEVI)

Term-End Examination

पI5GZ December, 2017

BIMEE-004 : OPTIMIZATION TECHNIQUES IN ENGINEERING

Time : 3 hours Maximum Marks : 70
Note: Answer any five of the following questions. All questions carry equal marks. Assume suitable value for any missing data. Use of scientific calculator is permitted.

1. (a) Explain how and why optimization techniques have been valuable in aiding executive decisions.
(b) Discuss the various phases in solving an optimization problem.
2. (a) Solve the following linear programming problem by graphical method :
Maximize

$$
\mathrm{z}=2 \mathrm{x}_{1}+3 \mathrm{x}_{2}
$$

subject to constraints

$$
\begin{aligned}
& x_{1}+x_{2} \leq 1 \\
& 3 x_{1}+x_{2} \leq 4 \\
& x_{1}+x_{2} \geq 0
\end{aligned}
$$

(b) Differentiate between single and multivariable optimization with suitable examples.
3. (a) Discuss the typical characteristics of a constrained problem. Explain direct and indirect methods in brief.
(b) Discuss the differences and similarities between Genetic algorithm and Traditional method.
4. (a) Solve the given linear programming problem by simplex method :

Minimize

$$
\mathrm{z}=-40 \mathrm{x}_{1}-100 \mathrm{x}_{2}
$$

subject to

$$
\begin{aligned}
& 10 x_{1}+5 x_{2} \leq 250 \\
& 2 x_{1}+5 x_{2} \leq 100 \\
& 2 x_{1}+3 x_{2} \leq 90 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

(b) Briefly describe the finite difference method applied to two-dimensional problems.
5. (a) Explain the concept involved in the branch and bound algorithm used for solving integer programming problems.
(b) Solve the following problem using Kuhn-Tucker conditions : 8

Maximize

$$
\mathrm{z}=2 \mathrm{x}_{1}^{2}-7 \mathrm{x}_{2}^{2}+12 \mathrm{x}_{1} \cdot \mathrm{x}_{2}
$$

subject to

$$
\begin{aligned}
& 2 x_{1}+5 x_{2} \leq 98 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

6. (a) Briefly describe dynamic programming and
its applications.
(b) Find the real root of the equation

$$
x^{4}+x^{2}-80=0
$$

by the Newton-Raphson method, correct to three decimal places.
7. (a) Briefly describe the pure and mixed strategies in the theory of games.
(b) Use dynamic programming to find the shortest path from city 1 to city 7 of the route network (distance between the cities are given in kilometres) as shown in Figure 1.

Figure 1
8. Write short notes on any four of the following:
$4 \times 3 \frac{1}{2}=14$
(a) Transhipment Problems
(b) Cutting Plane Methods
(c) Online RealTime Optimization
(d) Optimization in Econometric Approaches
(e) Goal Programming
(f) Discrete Simulation

