No. of Printed Pages : 3

BIEEE-015

B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination

00619 December, 2017

BIEEE-015 : STOCHASTIC CONTROL SYSTEMS

Time : 3 hours

Maximum Marks: 70

Note: Attempt any five questions. All questions carry equal marks. Symbols used have their usual meanings.

1. (a) The random variable X has the probability density function

$$f_X(x) = \begin{array}{ll} 2, & 0 \leq x \leq 1 \\ 0, & \text{elsewhere.} \end{array}$$

Find the following :

- (i) The cumulative function
- (ii) The median and the mode
- (iii) The mean-square value $E(X^2)$
- (iv) The variance $\sigma^2[X]$
- (b) Define the term 'probability density function'. 2

BIEEE-015

12

2.	Show that a second order random variable is		
	necessarily first order, but the converse need not		
	be tr	ue.	14
3.	(a)	Explain embedded Markov chain.	7
	(b)	Derive the relationship between continuous and discrete time Markov chains.	7
4.	syste	uss the role of Kalman filter in control em analysis and design. Also explain the rithm of a discrete Kalman filter.	14
5.	(a)	Discuss the significance of estimation in the analysis of dynamic systems.	6
	(b)	Explain the parameters used to judge the quality of an estimate.	8
6.	poin ^s fixed	uss the differences between optimal fixed t smoothing, fixed interval smoothing and lag smoothing. Mention their advantages disadvantages.	14
7.	(a)	What are LQR problems ? Formulate an LQR problem for a system described by	
		$\dot{\mathbf{X}} = \mathbf{A}\mathbf{X} + \mathbf{B}\mathbf{U}.$	
		Mention the assumptions made.	7
	(b)	Describe bounded optimal filter.	7
BIE	EE-01	5 2	

1

- 8. Write short notes on any *two* of the following : $2 \times 7 = 14$
 - (a) Wiener Process
 - (b) Optimal Prediction for Discrete Linear Systems
 - (c) Formulation of Continuous Filtering Equation

BIEEE-015