No. of Printed Pages : 3

BIEEE-012

B.Tech. – VIEP – ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination

00699

December, 2017

BIEEE-012 : ACTIVE FILTER DESIGN

Time : 3 hours

Maximum Marks : 70

Note: Attempt any **seven** questions. All questions carry equal marks. Use of scientific calculator is permitted. Symbols have their usual meanings.

1. For the circuit shown in Figure 1, find the transfer function V_2/V_1 . Investigate the changes in the transfer function caused by an op-amp with finite gain $A = \omega_t / s$.

Figure 1

BIEEE-012

10

Write short notes on any *two* of the following : $2 \times 5 = 10$

KHN Biquad (a)

2.

- Tow-Thomas Biquad **(b**)
- **Negative Resistors** (c)
- Show that the order of the Chebyshev filter to satisfy a set of specifications is always lower than 3. 10 that of the corresponding Butterworth filter.
 - Design a first-order high pass passive filter with zero dc gain and the attenuation is at least 4. 12 dB for f < 15.6 kHz. Also explain leapfrog 10 filters.
 - Explain how can one change a low-pass filter 10 5. through RC-CR transformation.
 - A Tow-Thomas biquad filter is designed for the parameter $f_0 = 3.6$ kHz, $\phi = 4$ and dc gain of 7 dB. 6. Estimate the minimum gain bandwidth product the op-amp must have, if the errors in frequency can't be larger than 1% and quality factor error not more than 2%.
 - A maximally flat magnitude transfer function is characterized by the parameter $\xi = 0.075$ and 7. u = 7. Determine the minimum attenuation at the stopband frequency $\omega_s = 1.85 \omega_p$. Assume $f_p = 980$ Hz. Design a test Sallen-Key filter using suitable op-amps.

BIEEE-012

10

10

- 8. Determine the inverse Chebyshev magnitude response and location of poles and zeros.
- 9. Design a switched capacitor first-order circuit that has a low frequency gain of + 10 and a - 3 dB frequency of 1 kHz. Give the values of the capacitor ratios α_1 and α_2 . 10
- 10. A Sallen-Key low pass filter is designed for the parameters $f_c = 4.8$ kHz, Q = 5 and dc gain H = 3. Estimate the errors in filter parameters if the circuit is to be built with an LM741 op-amp. 10

BIEEE-012

10