No. of Printed Pages : 3

BIEEE-012
 B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

00599

Term-End Examination

December, 2017

BIEEE-012 : ACTIVE FILTER DESIGN

Time: 3 hours

$$
\text { Maximum Marks : } 70
$$

Note: Attempt any seven questions. All questions carry equal marks. Use of scientific calculator is permitted. Symbols have their usual meanings.

1. For the circuit shown in Figure 1, find the transfer function V_{2} / V_{1}. Investigate the changes in the transfer function caused by an op-amp with finite gain $A=\omega_{t} / \mathrm{s}$.

Figure 1
2. Write short notes on any two of the following : $2 \times 5=10$
(a) KHN Biquad
(b) Tow-Thomas Biquad
(c) Negative Resistors
3. Show that the order of the Chebyshev filter to satisfy a set of specifications is always lower than that of the corresponding Butterworth filter.
4. Design a first-order high pass passive filter with zero dc gain and the attenuation is at least 12 dB for $\mathrm{f}<15 \cdot 6 \mathrm{kHz}$. Also explain leapfrog filters.
5. Explain how can one change a low-pass filter through RC-CR transformation.
6. A Tow-Thomas biquad filter is designed for the parameter $f_{0}=3.6 \mathrm{kHz}, \phi=4$ and dc gain of 7 dB . Estimate the minimum gain bandwidth product the op-amp must have, if the errors in frequency can't be larger than 1% and quality factor error not more than 2%.
7. A maximally flat magnitude transfer function is characterized by the parameter $\xi=0.075$ and $u=7$. Determine the minimum attenuation at the stopband frequency $\omega_{\mathrm{s}}=1.85 \omega_{\mathrm{p}}$. Assume $f_{p}=980 \mathrm{~Hz}$. Design a test Sallen-Key filter using suitable op-amps.
8. Determine the inverse Chebyshev magnitude response and location of poles and zeros.
9. Design a switched capacitor first-order circuit that has a low frequency gain of +10 and a -3 dB frequency of 1 kHz . Give the values of the capacitor ratios α_{1} and α_{2}.10
10. A Sallen-Key low pass filter is designed for the parameters $\mathrm{f}_{\mathrm{c}}=4.8 \mathrm{kHz}, \mathrm{Q}=5$ and dc gain $\mathrm{H}=3$. Estimate the errors in filter parameters if the circuit is to be built with an LM741 op-amp.

