B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

00989

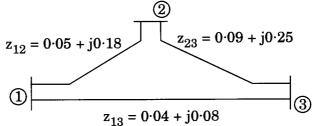
Term-End Examination

December, 2017

BIEEE-007 : COMPUTER APPLICATIONS IN POWER SYSTEMS

Time : 3 hours

Maximum Marks : 70


- Note: Attempt five questions in all. All questions carry equal marks. Assume any data, if missing. Use of scientific calculator is allowed.
- Draw the single line diagram of a power **1.** (a) system representing hierarchy of transmission and distribution systems.
 - (b) Discuss the difference between a two-winding transformer and an autotransformer. 7 1

BIEEE-007

P.T.O.

7

2. (a) Determine Y_{bus} for a 3-bus system shown in the figure below. The line series impedances are as follows :

7

7

7

7

7

7

7

7

- (b) How does the Newton-Raphson method get modified to account for PV buses ?
- **3.** (a) Explain the incidence matrix and cutset matrix with the help of a suitable example.
 - (b) What do you mean by Bus Impedance algorithm? Derive its necessary equations.
- 4. (a) How will you obtain the economic operating criterion for hydro-thermal systems with network losses considered ?
 - (b) Develop the criterion of economic operation with restriction on fuel supply.
- 5. (a) Discuss the purpose of load flow studies of a power system. Also classify the buses for the same.
 - (b) Explain why Y_{bus} is used for load flow solution instead of Z_{bus}.

BIEEE-007

2

- 6. (a) Develop the mathematical model of tap changing transformer to be represented in the formation of $/Y_{bus}/$ for load flow analysis.
 - (b) Derive the load flow equations in polar form for Newton-Raphson method.
- 7. Write short notes on any *two* of the following: $2 \times 7 = 14$
 - (a) Contingency Analysis
 - (b) Demand Side Management of Power Systems
 - (c) Optimal Load Flow Study of Power Systems

BIEEE-007

1,000

3

7

7