DIPLOMA - VIEP - IN ELECTRICAL ENGINEERING (DELVI)

Term-End Examination
December, 2017

BIEE-033 : ELECTRICAL CIRCUIT THEORY

Time: 2 hours
Maximum Marks : 70
Note: Question no. 1 is compulsory. Attempt any four questions from questions no. 2 to 7. All questions carry equal marks. Assume missing data, if any. Use of scientific calculator is allowed.

1. (a) Draw the graphical representation of Resistance (R) versus Frequency (F).
(b) Identify two important properties of the inductor (L).
(c) What is the Q-factor of a resonant circuit?
(d) For a balanced, three-phase delta (Δ) connected circuit, write the relations between line and phase voltages and currents.
(e) Why can the current through an inductor not change instantaneously?
(f) Draw and explain, dependent current source.
(g) A network contains only independent current source and resistors. If values of all resistors are doubled then calculate the values of node voltages. $7 \times 2=14$
2. (a) Using Star-Delta transformations, evaluate the equivalent resistance of the circuit shown in Figure 1 at the terminal of X and Y.

Figure 1
(b) In a resonant circuit as given in Figure 2, find the input impedance of the circuit at terminal A and B and also calculate the resonant frequency.

Figure 2
3. (a) Discuss Resonance in series RLC circuit. Establish the relation between the Quality Factor (Q), Resonant Frequency (ω) and Bandwidth.
(b) A 4 ohm resistor is connected to a 10 mH inductor across a $100 \mathrm{~V}, 50 \mathrm{~Hz}$ voltage source. Find input current, voltage drop across resistor and inductor, power factor of the circuit and the real power consumed in the circuit.
4. (a) Calculate the current in each branch of Figure 3 by superposition theorem.

Figure 3
(b) For the circuit shown in Figure 4, draw the Thevenin's equivalent circuit across $A B$ terminal.

Figure 4
5. (a) Calculate (a) maximum value, and (b) the root mean square values of the following quantities :
(i) $40 \sin \omega t$
(ii) $\mathrm{B} \sin \left(\omega \mathrm{t}-\frac{\pi}{2}\right)$
(iii) $10 \sin \omega t-17 \cdot 3 \cos \omega t$

Draw the phasors showing the phase difference with respect to $\mathrm{A} \sin \left(\omega t-\frac{\pi}{6}\right)$.
(b) What is Ohm's law? State its limitations.
6. (a) State, prove and explain maximum power transfer theorem for DC and AC circuits separately.
(b) Explain the concept of Complex Power. Define Active power and Reactive power using impedance triangle.
7. Write short notes on any two of the following : $2 \times 7=14$
(a) Star-Delta and Delta-Star Transformations
(b) Duality and Dual Networks
(c) Half-Power Frequencies in Resonant Circuits

