5

5

5

5

B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

00457

December, 2017

BIELE-017: BIO-INFORMATICS

Time: 3 hours Maximum Marks: 70

Note: Attempt any **seven** questions. All questions carry equal marks. Missing data, if any, may be suitably assumed. Use of scientific calculator is allowed.

- 1. (a) Discuss the applications and challenges in Bioinformatics.
 - (b) Why is FASTA a more rigorous database search than BLAST? Compare the algorithm in terms of speed and completeness.
- 2. (a) Discuss the various steps in dynamic programming to perform pair-wise sequence alignment.
 - (b) What is PSI-BLAST? Write down its various applications in Bioinformatics.

BIELE-017 1 P.T.O.

3.	Defin	ne Microarray. Compare the SAGE with	
	DNA	-microarrays.	4+6
4.	(a)	Explain Xtallography process.	5
	(b)	Describe the microarray clustering procedure with its classification.	5
5.	(a)	Compare 1D-motifs with 3D-motifs.	5
	(b)	State the role of MUSTA algorithm in geometric hashing.	5
6.	seque	ain the methodology involved in multiple ence alignment. Also write down its ntages.	7+3
7.	usefu	t are Genetic Networks? How are they all in predicting a gene-structure? Write a its applications and advantages. 4+	-3+3
8.	(a)	Describe Hidden Markov models.	5
	(b)	How will you predict epitomes on a genomic scale?	5
9.	(a)	Discuss the phylogenetic algorithm with its various applications.	5
	(b)	What are the various applications of	
		comparative genomics algorithm in Bioinformatics?	5

- 10. Write down short notes on any two of the following: $2\times 5=10$
 - (a) NMR
 - (b) Proteomics
 - (c) Gene-finding Algorithms
 - (d) 3D Structure Alignment