No. of Printed Pages: 2

BIELE-009

B.Tech. – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

BIELE-009: QUANTUM COMMUNICATION

Time: 3 hours Maximum Marks: 70

Note: Attempt any **seven** questions. All questions carry equal marks. Missing data, if any, may be suitably assumed. Use of calculator is permitted.

- State the Heisenberg Uncertainty Principle.
 Explain its significance in context to quantum mechanics.
- **2.** What is Kraus Representation Theorem? How is the above theorem used for the evolution of open system quantum? Explain in brief. 4+6=10
- 3. Explain the process of transmitting classical information over quantum channels. 10
- **4.** Explain the procedure for applying Holevo's theorem for determining mutual information. *10*

BIELE-009 1 P.T.O.

5.	relatio	e an expression which establishes the onship between mixed state compression lolevo's theorem.	10
6.	_	Explain the following terms: 5+5=	
	(a)	Entanglement	
	(b)	Quantum channel capacity	
7.		are the various notions for quantum unication over quantum channels? Explain.	10
8.		are Shor 9 qubit codes used to protect nation against bit flips and phase flips?	10
9.	_	in the stabilizer code construction technique s use in quantum coding theory.	10
10.	Write	short notes on any two : $2 \times 5 =$	=10
	(a)	Hilbert Space	
	(b)	Von Neumann Entropy	
	(c)	Pure States and Mixed States	