No. of Printed Pages : 2

BIELE-008

B.Tech. – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

BIELE-008 : OPTO ELECTRONICS COMMUNICATION SYSTEMS

Time : 3 hours

Maximum Marks: 70

Note: Attempt seven questions. All questions carry equal marks. Missing data, if any, may be suitably assumed. Use of scientific calculator is permitted.

 What are circularly symmetric step-index optical fibers ? Briefly explain the process of solving Maxwell's equation in such types of optical fibers. 10

2.	. Define and explain the concept of V-number as						
	applicable to	optical fiber	· commu	nication.	Also,		
	differentiate	between	single	mode	and		
	multi-mode fibers.						

- **3.** Mathematically derive Kerr non-linearity and physically explain its significance.
- 4. Explain the construction, operation and characteristics of a LED. 10

1

BI	Ē	L	E-	0	0	8
----	---	---	----	---	---	---

P.T.O.

10

 Explain the constructional details, operational mechanism and optical characteristics of a pin detector.

6. Briefly discuss the mechanisms of the

	following:					
	(a)	High-impedance receivers				
	(b)	Trans-impedance receivers				
7.	(a)	Define the following terms :5(i) Dispersion(ii)(ii) Self-phase modulation				
	(b)	What will be the combined effect of dispersion and self-phase modulation phenomenon? 5				
8.	(a)	Discuss various intermodulation effects. 5				
	(b)	Describe sensitivity and quantum efficiency in optical detectors. 5				
9.	Explain the operation of a semiconductor amplifier and hence derive an expression for signal-to-noise ratio. 5+5=10					
10.	Write follow	e short notes on any two of the ving: $2 \times 5 = 10$				
	(a)	Non-linear Schrödinger Equation				
	(b)	Brillouin Amplifier				
	(c)	Graded Index Fibers				