DIPLOMA - VIEP - ELECTRONICS AND

COMMUNICATION ENGINEERING (DECVI) /
ADVANCED LEVEL CERTIFICATE COURSE IN ELECTRONICS AND COMMUNICATION

ENGINEERING (ACECVI)
ロロ9E9

Term-End Examination

December, 2017

BIEL-028 : CIRCUITS AND NETWORKS

Time: 2 hours
Maximum Marks : 70

Note: Attempt five questions in all. Question no. 1 is compulsory. All questions carry equal marks. Symbols used have their usual meaning. Use of scientific calculator is permitted.

1. Choose the correct answer from the given four alternatives: $\quad 7 \times 2=14$
(a) In Figure 1, the value of resistance R in ohm is

Figure 1
(i) 10
(ii) 20
(iii) 30
(iv) 40
(b) A practical current source is represented by
(i) A resistance in series with an ideal current source
(ii) A resistance in parallel with an ideal current source
(iii) A resistance in parallel with an ideal voltage source
(iv) None of the above
(c) The current through the $2 \mathrm{k} \Omega$ resistance in the circuit shown in Figure 2 is

Figure 2
(i) 0 mA
(ii) 1 mA
(iii) 2 mA
(iv) 6 mA
(d) The switch in the circuit (Figure 3) has been closed for a long time. It is opened at $t=0$. At $t=0^{+}$, the current through the $1 \mu \mathrm{~F}$ capacitor is

Figure 3
(i) 0 A
(ii) 1 A
(iii) 1.25 A
(iv) 5 A
(e) For the two-port network shown in Figure 4, the Z-matrix is given by

Figure 4
(i) $\left[\begin{array}{cc}Z_{1} & Z_{1}+Z_{2} \\ Z_{1}+Z_{2} & Z_{2}\end{array}\right]$
(ii) $\left[\begin{array}{cc}Z_{1} & Z_{1} \\ Z_{1}+Z_{2} & Z_{2}\end{array}\right]$
(iii) $\left[\begin{array}{cc}\mathrm{Z}_{1} & \mathrm{Z}_{2} \\ \mathrm{Z}_{2} & \mathrm{Z}_{1}+\mathrm{Z}_{2}\end{array}\right]$
(iv) $\left[\begin{array}{cc}Z_{1} & Z_{1} \\ Z_{1} & Z_{1}+Z_{2}\end{array}\right]$
(f) The time constant of the network shown in Figure 5 is

Figure 5
(i) CR
(ii) 2 CR
(iii) CR/4
(iv) CR/2
(g) In a parallel RL circuit, if I_{R} is the current in the resistor and I_{L} is the current in the inductor, then
(i) I_{R} lags I_{L} by 90°
(ii) I_{R} leads I_{L} by 270°
(iii) I_{L} leads I_{R} by 270°
(iv) I_{L} lags I_{R} by 90°
2. (a) State the Superposition theorem with suitable example.
P.T.O.
(b) Draw the Thevenin's equivalent of the circuit shown in Figure 6 and find the load current.

Figure 6
3. (a) A 15 mH inductor is in series with a parallel combination of 80Ω resistor and $20 \mu \mathrm{~F}$ capacitor. If the angular frequency of the applied voltage is $\omega=1000$ radians $/ \mathrm{sec}$ and, find the admittance of the network.
(b) A 10 mH coil is connected in series with a loss-free capacitor to a variable frequency source of 20 V . The current in the circuit has a maximum value of 0.2 A at a frequency of 100 kHz . Calculate the
(i) value of capacitance,
(ii) Q-factor of the coil, and
(iii) half power frequencies.
4. (a) Determine the transmission parameter of the network shown in Figure 7.

Figure 7
(b) Define Transfer Function with a suitable example.
5. (a) Design a prototype band pass filter having cut-off frequencies of 4 kHz and 6 kHz and a nominal characteristic impedance of 628Ω.
(b) Calculate the driving point and transfer impedance of the network shown in Figure 8.

Figure 8
6. (a) Find the initial and final values of the following function, using initial value and final value theorems respectively :

$$
\frac{s-1}{(s+1)(s+2)}
$$

(b) A coil of resistance 40Ω and inductance 0.75 H forms part of a series circuit for which resonant frequency is 55 Hz . If the supply is $250 \mathrm{~V}, 50 \mathrm{~Hz}$, find the
(i) line current,
(ii) power factor,
(iii) power consumed, and
(iv) voltage across the coil.
7. Write short notes on any two of the following :
(a) Maximum Power Transfer Theorem
(b) Interconnection of Two-Port Networks
(c) Hybrid Parameters

