No. of Printed Pages: 4

OICS-001

DIPLOMA - VIEP - COMPUTER SCIENCE AND ENGINEERING (DCSVI) / ADVANCED LEVEL CERTIFICATE COURSE IN COMPUTER SCIENCE AND ENGINEERING (ACCSVI)

Term-End Examination

□□77□ December, 2017

OICS-001: DATA STRUCTURES AND FILES

Time: 2 hours Maximum Marks: 70

Note: Question no. 1 is **compulsory**. Attempt any **four** questions from the remaining.

- 1. Choose the correct answer from the given alternatives: $7\times2=14$
 - (a) How many nodes in a tree have no ancestors?
 - (i) 0
 - (ii) 1
 - (iii) 2
 - (iv) n
 - (b) The prefix form of an infix expression p + q r * t is
 - (i) + pq * rt
 - (ii) -+pqr*t
 - (iii) -+pq*rt
 - (iv) -+*pqrt

(c)	One of the major drawbacks of a B-Tree is the difficulty of traversing the keys sequentially.				
	(i)	True			
	(ii)	False			
(d)	Which of the following sorting algorithms is stable?				
	(i)	Insertion sort			
	(ii)	Bubble sort			
	(iii)	Quick sort			
	(iv)	Heap sort			
(e)	Representation of data structure memory is known as				
	(i)	Recursive			
	(ii)	Abstract data type			
	(iii)	Storage structure			
	(iv)	File structure			
(f)	A B-tree of minimum degree t can maximum pointers in a node				
	(i)	t-1			
	(ii)	2t-1			
	(iii)	2t			
	(iv)	t			

-		(i)	Binary search		
		(ii)	Linear search		
		(iii)	Tree search		
		(iv)	Hashing		
2.	Explain the following with the help of suita examples:				
	(a)	Call b	y value		
	(b)	Call by	y reference		
3.	Discu	ss Krus	skal's algorithm with an example.	14	
4.	(a)	Explai	n topological sort with an example.	7	
	(b)	minim	be the process of finding the num and maximum elements of search tree.		
5.	Write	about	hashing and its function in detail.	14	
6.	Explain the following with the help of suits examples:				
	(a)	Recurs	sion		
	(b)	Struct	ure	ı	
	(c)	Union			
OIC	S-001		3	P.T.O	

A technique for direct search is

(g)

- 7. (a) Briefly explain the operations of a queue.
 - (b) Explain the types of arrays with the help of an example. 7
- 8. (a) Convert the following prefix expression to postfix expression using stack:

$$A * B + (C - D / E) #$$

(b) Perform an insertion operation using the binary search tree for the following elements:

7