No. of Printed Pages: 7

BICS-033

DIPLOMA - VIEP - COMPUTER SCIENCE AND ENGINEERING (DCSVI) Term-End Examination December, 2017

BICS-033 : NUMERICAL METHODS AND COMPUTATION

Time : 2 hours

Maximum Marks : 70

- Note: Attempt five questions in all. Question no. 1 is compulsory. All questions carry equal marks.
- 1. Choose the correct answer from the given four alternatives. $7 \times 2=14$
 - (a) If, for a real continuous function f(x),
 f(a). f(b) < 0, then in the range of [a, b] for
 f(x) = 0 there is
 - (i) one root
 - (ii) undetermined number of roots
 - (iii) no root
 - (iv) at least one root

BICS-033

(b) Which of the following is a one-point method of root finding ?

- (i) Secant Method
- (ii) Regula-Falsi Method
- (iii) Newton-Raphson Method
- (iv) None of the above
- (c) In Gauss Elimination method for solving a system of linear algebraic equations, triangulation leads to
 - (i) Diagonal Matrix
 - (ii) Lower Triangular Matrix
 - (iii) Upper Triangular Matrix
 - (iv) Singular Matrix
- (d) Which of the following relations, between shift operator (E) and forward difference operator (Δ), is correct ?
 - (i) $\mathbf{E} = \mathbf{1} + \Delta$
 - (ii) $\mathbf{E} = \frac{1}{\Delta}$
 - (iii) $\mathbf{E} = \Delta$

(iv)
$$\mathbf{E} = 1 + \frac{1}{\Delta}$$

BICS-033

2

ž

- (e) Which of the following methods has the highest rate of convergence ?
 - (i) Newton-Raphson Method
 - (ii) Regula-Falsi Method
 - (iii) Secant Method
 - (iv) None of the above
- (f) In general, the ratio of truncation error to that of round-off error is
 - (i) **2**:1
 - (ii) 1:1
 - (iii) 1:2
 - (iv) 1:3
- (g) Which of the following expressions is/are correct for line of regression of Y on X?

(i)
$$X - \overline{X} = r \frac{\sigma_x}{\sigma_y} (Y - \overline{Y})$$

(ii)
$$Y - \overline{Y} = r \frac{\sigma_y}{\sigma_x} (X - \overline{X})$$

- (iii) Both (i) and (ii)
- (iv) None of the above

BICS-033

P.T.O.

- 2. (a) Perform three iterations of the Newton-Raphson method, to obtain the approximate value of $(17)^{1/3}$, starting with the initial approximation $X_0 = 2$. 7
 - (b) Given the data :

x :	5	7	11	13	17
f (x) :	150	392	1452	2366	5202

Determine f(a) using Newton's Divided Différence method.

7

7

3. (a) Solve the following system of equations using Gauss-Seidel method :

20x + y - 2z = 17

3x + 20y - z = -18

$$2x - 3y + 20z = 25$$

(b) Evaluate

 $\int_{1}^{2} \log x \, dx \quad \text{by Trapezoidal rule.} \qquad 7$

BICS-033

4

4.

(a) Use Runge-Kutta method to find y(0.2) for the equation

$$\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\mathrm{y}-\mathrm{x}}{\mathrm{y}+\mathrm{x}}\,;\,\mathrm{y}(0)=1.$$

Take h = 0.2.

(b) A table of
$$x vs f(x)$$
 is given below :

x: 1.5 3 6
$$f(x)$$
: -0.25 2 20

Find the value of f(x) at x = 4 using Lagrange's interpolation formula.

5. (a) Find the value of
$$\int_{0}^{0.6} e^{x} dx$$
, taking $n = 6$, using Simpson's $1/3^{rd}$ rule.

(b) Find the approximate value of the root of the equation
$$x^3 + x - 1 = 0$$
, near $x = 1$ using Regula-Falsi method. 7

6. (a) Perform the following :

(i) Evaluate $\frac{\Delta^2}{E}(\mathbf{x}^3)$, where E is shift operator, Δ is forward difference operator. $3\frac{1}{2}$

(ii) Prove that $\Delta \nabla = \Delta - \nabla$, where Δ and ∇ are forward and backward difference operators, respectively. $3\frac{1}{2}$

BICS-033

P.T.O.

7

7

7

(b) Solve the following system of equations using Gauss Elimination method :

$$2x + y + z = 10$$

 $3x + 2y + 3z = 18$
 $x + 4y + 9z = 16$

7. (a) Fit a straight line to the following data :

x :	0	1	2	3	4
y :	1	1.8	3∙3	4.5	6∙3

Determine its slope and intercept.

(b) For the data given below :

(X)	(Y)		
Quantity produced (Tons)	Cost of Production (Thousand dollars)		
1	2		
2	3		
4	4		
8	7		
6	6		
5	5		
8	8		
9	8		
7	6		

Perform the following :

- (i) Determine the regression equation when X is a dependent variable and Y is an independent variable.
- (ii) Use the regression equation to determine Y when X = 4.

BICS-033

7

7

7

8. Explain any *four* of the following :

$$4 \times 3\frac{1}{2} = 14$$

- (a) Pitfalls of Gauss Elimination method
- (b) Bisection method
- (c) Taylor Series method for solving Ordinary Differential Equations
- (d) Golden Section Search
- (e) Types of Errors

, •