B.Tech. - VIEP - MECHANICAL ENGINEERING / B.Tech. CIVIL ENGINEERING (BTMEVI / BTCLEVI)

Term-End Examination

ロaB12

December, 2017

BICE-027 : MATHEMATICS-III

Time: 3 hours
Maximum Marks : 70
Note: Attempt any ten questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. Expand for $\mathrm{f}(\mathrm{x})=\mathrm{k}$ for $0<\mathrm{x}<2$ in a half range sine series.
2. Find the Fourier series expansion of the periodic function of period 2π

$$
f(x)=\mathbf{x}^{2},-\pi \leq x \leq \pi .
$$

Hence, find the sum of the series

$$
\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots \quad \quad 5+2=7
$$

3. Find the Fourier series for the function

$$
f(x)=\left\{\begin{array}{cc}
x, & 0<x<1 \tag{7}\\
1-x, & 1<x<2
\end{array}\right.
$$

4. Solve : 7

$$
\left(x^{2}-y^{2}-z^{2}\right) p+2 x y q=2 x z
$$

5. Solve :

$$
\frac{\partial^{3} z}{\partial x^{3}}-\frac{\partial^{3} z}{\partial y^{3}}=x^{3} y^{3}
$$

6. Solve :

$$
\left(D-3 D^{\prime}-2\right)^{2} z=2 e^{2 x} \sin (y+3 x)
$$

7. Using the method of separation of variables, solve

$$
\begin{equation*}
\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u, \text { where } u(x, 0)=6 e^{-3 x} \tag{7}
\end{equation*}
$$

8. Solve completely the equation

$$
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}
$$

representing the vibrations of a string of length l, fixed at both ends, given that

$$
\begin{align*}
& \mathrm{y}(0, \mathrm{t})=0, \mathrm{y}(l, \mathrm{t})=0, \mathrm{y}(\mathrm{x}, 0)=\mathrm{f}(\mathrm{x}) \text { and } \\
& \frac{\partial}{\partial \mathrm{t}} \mathrm{y}(\mathrm{x}, 0)=0,0<\mathrm{x}<l \tag{7}
\end{align*}
$$

9. Find the temperature in a bar of length 2 whose ends are kept at zero and lateral surface insulated if the initial temperature is

$$
\begin{equation*}
\sin \frac{\pi x}{2}+3 \sin \frac{5 \pi x}{2} \tag{7}
\end{equation*}
$$

10. Solve

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0,0<x<\pi, 0<y<\pi
$$

which satisfies the conditions

$$
\begin{align*}
& u(0, y)=u(\pi, y)=u(x, \pi)=0 \text { and } \\
& u(x, 0)=\sin ^{2} x . \tag{7}
\end{align*}
$$

11. A thin rectangular plate whose surface is impervious to heat flow has $t=0$ an arbitrary distribution of temperature $f(x, y)$. Its four edges $\mathrm{x}=0, \mathrm{x}=\mathrm{a}, \mathrm{y}=0, \mathrm{y}=\mathrm{b}$ are kept at zero temperature. Determine the temperature at a point of the plate as t increases.
12. Find the Fourier transform of the function

$$
f(x)=\left\{\begin{array}{cc}
1+(x / a), & -a<x<0 \tag{7}\\
1-(x / a), & 0<x<a \\
0, & \text { otherwise }
\end{array}\right.
$$

13. Find the Fourier sine transform of

$$
\begin{equation*}
f(x)=\frac{e^{-a x}}{x} \tag{7}
\end{equation*}
$$

14. State and prove convolution theorem on Fourier transform, i.e.,

$$
\begin{equation*}
F[f(x) * g(x)]=F[f(x)] \cdot F[g(x)] \tag{7}
\end{equation*}
$$

15. Find the function whose sine transform is

$$
\frac{\mathrm{e}^{-\mathbf{a s}}}{\mathrm{s}}
$$

