No. of Printed Pages: 4

BICE-024

DIPLOMA IN CIVIL ENGINEERING (DCLEVI) / ADVANCED LEVEL CERTIFICATE IN CIVIL ENGINEERING (ACCLEVI)

Term-End Examination

00962

December, 2017

BICE-024 : SOIL MECHANICS AND FOUNDATION ENGINEERING

Time : 2 hours

Maximum Marks: 70

Note: Attempt any five questions. Question no. 1 is compulsory. All questions carry equal marks. Use of scientific calculator is allowed.

- 1. Choose the correct option in the following questions : $7 \times 2=14$
 - (a) Relative density of a compacted dense sand is approximately equal to
 - (i) **0·4**
 - (ii) 0·6
 - (iii) **0.95**
 - (iv) 1.20
 - (b) Water content of soil can
 - (i) never be greater than 100%
 - (ii) take values only from 0% to 100%
 - (iii) be less than 0%
 - (iv) be greater than 100%

BICE-024

- (c) A pycnometer is used to determine
 - (i) water content and void ratio
 - (ii) specific gravity and dry density
 - (iii) water content and specific gravity
 - (iv) void ratio and dry density
- (d) Valid range for n, the % void, is
 - $(i) \quad n \leq 0$
 - (ii) n > 0
 - (iii) $0 \le n \le 100$
 - (iv) 0 < n < 100
- (e) Void ratio of a soil mass can
 - (i) never be greater than zero
 - (ii) be zero
 - (iii) take value between 0 to 1 only
 - (iv) take any value greater than zero
- (f) Terzaghi bearing capacity factors N_c , N_q and N_v are functions of
 - (i) angle of internal friction only
 - (ii) cohesion only
 - (iii) both cohesion and angle of internal friction
 - (iv) None of the above
- (g) For a base factor, the depth factor D_f is
 - (i) zero
 - (ii) 1
 - (iii) $0 < D_f < 1$
 - (iv) $D_f > 1$

BICE-024

- 2. (a) Find the relation between e, G, w and S_r for a soil sample, where e = void ratio, G = specific gravity, w = water content, S_r = saturation ratio.
 - (b) The porosity of a soil sample is 35% and the specific gravity of its particles is 2.7. Calculate its void ratio, dry density and submerged density.
- (a) Explain Darcy's law and briefly describe a method for determination of the coefficient of permeability in a laboratory.
 - (b) What is effective stress principle ? Explain briefly.
- 4. (a) What is Mohr's strength theory for soils ?Sketch typical strength envelopes for a clean sand.
 - (b) A consolidated undrained test was conducted on a soil sample with effective pressure, $\sigma_3 = 100 \text{ kN/m}^2$. The deviator stress at failure was found to be 60 kN/m². The soil is known to have effective parameters, C' = 0 and $\phi' = 30^\circ$ and total parameters under undrained condition, $C_u = 0$ and $\phi_u = 13.3^\circ$. What is the pore water pressure at failure ?

BICE-024

7

7

7

7

7

7

- 5. (a) What are the factors which affect the compaction density of soil ? Explain briefly. 7
 - (b) What is a compaction curve ? Show it with a neat sketch and briefly explain its utility.
- 6. (a) Write the assumptions in Terzaghi's analysis for bearing capacity of soil and discuss the effect of water table on the bearing capacity of soil.
 - (b) Briefly explain various factors which effect the depth of a shallow foundation.
- 7. Write short notes on any *four* of the following: $4 \times 3\frac{1}{2} = 14$
 - (a) Disturbed and Undisturbed Samples
 - (b) Negative Skin Friction
 - (c) Safe Bearing Capacity and Allowable Bearing Capacity
 - (d) Degree of Saturation
 - (e) Index Properties
 - (f) Methods of Soil Exploration

BICE-024

1,000

7

7

7