DIPLOMA IN CIVIL ENGINEERING (DCLE(G)) /

 DIPLOMA IN MECHANICAL ENGINEERING (DME) / DCLEVI / DMEVI / DELVI / DECVI / DCSVI / ACCLEVI / ACMEVI / ACELVI / ACECVI / ACCSVI
ロロ15?

Term-End Examination
December, 2017

BET-022 : STRENGTH OF MATERIALS

Time: 2 hours
Maximum Marks : 70
Note: Attempt five questions in all. Question no. 1 is compulsory. Assume any missing data suitably. Use of scientific calculator is permitted.

1. Answer all the questions:
(a) Define Normal and Shear stress.
(b) Show that $E=\frac{9 K G}{3 K+G}$; where E, G and K are Young's modulus of elasticity, modulus of rigidity and bulk modulus.
(c) Define Point of Contraflexure in a beam.
(d) Explain neutral axis with diagram.
(e) Define Equivalent Length of a column.
(f) What is Torsional stress?
(g) Draw the stress - strain diagram for cast iron.
2. In a tensile test on a certain specimen 20 mm diameter, 200 mm long, an axial pull of 100 kN is applied. It produces an elongation of 0.32 mm and reduction in diameter of 0.0085 mm . Find the value of Poisson ratio and the three modulii.
3. At a certain point in a strained material the normal stresses on two planes at right angles to each other are $20 \mathrm{~N} / \mathrm{mm}^{2}$ and $10 \mathrm{~N} / \mathrm{mm}^{2}$, both being tensile. They are accompanied by a shear stress of $10 \mathrm{~N} / \mathrm{mm}^{2}$. Find principal planes, principal stresses and maximum shear stress.
4. A steel beam of hollow square section of 60 mm outer side and 50 mm inner side is simply supported on a span of 4 m . Find the maximum concentrated load the beam can carry at the middle of the span, if the bending stress is not to exceed $120 \mathrm{~N} / \mathrm{mm}^{2}$.
5. Draw the Shear Force Diagram (SFD) and Bending Moment Diagram (BMD). Also draw the SFD and BMD of the beam loaded as shown in figure 1.

Figure 1
6. A hollow shaft of external diameter 120 mm transmits 30 kW at 200 rpm . Determine the maximum internal diameter, if the maximum shear stress in the shaft is not to exceed $60 \mathrm{~N} / \mathrm{mm}^{2}$. 14
7. Write short notes on the following :
(a) Middle Third Rule for Rectangular Cross-Section
(b) Euler's Formula for Column

