DIPLOMA IN CIVIL ENGINEERING（DCLE（G））／ DIPLOMA IN MECHANICAL ENGINEERING （DME）／DCLEVI／DMEVI／DELVI／DECVI／ DCSVI ACCLEVI／ACMEVI／ACELVI／ ACECVI／ACCSVI
ロロマロア Term－End Examination
December， 2017

BET－021 ：MATHEMATICS－II

Time ： 2 hours

Maximum Marks ： 70

Note：Question no． 1 is compulsory．Attempt any four questions out of the remaining．Use of scientific calculator is permitted．

1．Answer any seven parts of the following ：$\quad 7 \times 2=14$
（a）Find the domain of definition of $\log _{e} \frac{2+x}{2-x}$ ．
（b）Evaluate ：

$$
\lim _{x \rightarrow 0} \frac{e^{p x}-e^{-q x}}{x}
$$

(c) Show that the function $\phi(x)$ defined below is continuous at $x=1$.

$$
\begin{aligned}
\phi(x) & =x^{2}+1, \text { when } x>1 \\
& =2, \text { when } x=1 \\
& =2 x, \text { when } x<1 .
\end{aligned}
$$

(d) Find the derivative of $\tan ^{-1} \sqrt{\frac{1+\cos 2 x}{1-\cos 2 x}}$.
(e) Find the equation of the normal at $(3,2)$ on the curve $4 \mathrm{x}^{2}+9 \mathrm{y}^{2}=72$.
(f) Evaluate :

$$
\int \frac{d x}{\sqrt{e^{x}-1}}
$$

(g) Prove that $\int_{-\pi}^{\pi} \frac{x e^{x^{2}}}{1+x^{2}} d x=0$.
(h) Evaluate :

$$
\left|\begin{array}{ccc}
1 & \cos 60^{\circ} & \cos 30^{\circ} \\
\frac{1}{2} & \sin 30^{\circ} & \sin 60^{\circ} \\
1 & 0 & 2
\end{array}\right|
$$

(i) If $x+\frac{1}{x}=2 \cos \frac{\pi}{7}$, show that

$$
x^{-7}+\frac{1}{x^{7}}=-2
$$

(j) Find the median of $3 \cdot 1,2 \cdot 6,5 \cdot 0,4 \cdot 7,2 \cdot 4$, $3 \cdot 9,5 \cdot 1$ and $3 \cdot 6$.
2. (a) If $y=x \sqrt{\frac{x^{2}+4}{x^{2}+3}}$, find $\frac{d y}{d x}$.
(b) Examine whether the following function is even or odd :

$$
f(x)=\log _{e}\left(x+\sqrt{x^{2}+1}\right) \quad 2 \times 7=14
$$

3. (a) Evaluate :

$$
\operatorname{Lt}_{x \rightarrow 0} \frac{\tan 2 x-2 \sin x}{x^{3}}
$$

(b) The function $f(x)=\frac{2 x^{2}-8}{x-2}$ is undefined at $x=2$. What value must be assigned to $f(2)$, if $f(x)$ is to be continuous at $x=2 ? \quad 2 \times 7=14$
4. (a) Integrate :

$$
\int \frac{x e^{x} d x}{(x+1)^{2}}
$$

(b) Find the equation of the normal to the parabola $y^{2}=3 x$ which is perpendicular to the line $\mathrm{y}=2 \mathrm{x}+4$.
$2 \times 7=14$
5. (a) Express $\frac{1}{1-\cos \theta+2 i \sin \theta}$ in the form of $A+i B$.
(b) Draw a rough sketch of the curve $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$; and evaluate the area of the region under the curve and above the x -axis.
6. (a) Verify that $B^{T} A^{T}=(A B)^{T}$ when

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 0
\end{array}\right], B=\left[\begin{array}{cc}
1 & 2 \\
2 & 0 \\
-1 & 1
\end{array}\right]
$$

(T denotes Transpose)
(b) Show that $\left|\begin{array}{ccc}a & b-c & c-b \\ a-c & b & c-a \\ a-b & b-a & c\end{array}\right|$

$$
=(a+b-c)(b+c-a)(c+a-b) . \quad 2 \times 7=14
$$

7. (a) Find the mean and the median for the following data :

Weight in kg	No. of Persons
$36-40$	14
$41-45$	26
$46-50$	40
$51-55$	53
$56-60$	50
$61-65$	37
$66-70$	25

(b) Find the mean deviation of the following series :

X	Frequency
10	3
11	12
12	18
13	12
14	3
Total	48

$2 \times 7=14$

