No. of Printed Pages : 5

BET-021

DIPLOMA IN CIVIL ENGINEERING (DCLE(G)) / DIPLOMA IN MECHANICAL ENGINEERING (DME) / DCLEVI / DMEVI / DELVI / DECVI / DCSVI/ ACCLEVI / ACMEVI / ACELVI / ACECVI / ACCSVI

00207 Term-End Examination

December, 2017

BET-021 : MATHEMATICS - II

Time : 2 hours

Maximum Marks : 70

P.T.O.

- **Note:** Question no. 1 is **compulsory**. Attempt any **four** questions out of the remaining. Use of scientific calculator is permitted.
- 1. Answer any **seven** parts of the following : $7 \times 2 = 14$
 - (a) Find the domain of definition of $\log_e \frac{2+x}{2-x}$.
 - (b) Evaluate:

$$\lim_{x \to 0} \frac{e^{px} - e^{-qx}}{x}$$

BET-021

1

(c) Show that the function $\phi(x)$ defined below is continuous at x = 1.

$$\phi(x) = x^2 + 1$$
, when $x > 1$
= 2, when $x = 1$
= 2x, when $x < 1$

(d) Find the derivative of $\tan^{-1} \sqrt{\frac{1+\cos 2x}{1-\cos 2x}}$.

(e) Find the equation of the normal at (3, 2) on the curve $4x^2 + 9y^2 = 72$.

į

I

(f) Evaluate :
$$\int \frac{dx}{\sqrt{e^x - 1}}$$

(g) Prove that
$$\int_{-\pi}^{\pi} \frac{xe^{x^2}}{1+x^2} dx = 0.$$

(h) Evaluate :

(i) If
$$x + \frac{1}{x} = 2 \cos \frac{\pi}{7}$$
, show that
 $x^{-7} + \frac{1}{x^7} = -2.$

(j) Find the median of 3.1, 2.6, 5.0, 4.7, 2.4,
 3.9, 5.1 and 3.6.

BET-021

2. (a) If
$$y = x \sqrt{\frac{x^2 + 4}{x^2 + 3}}$$
, find $\frac{dy}{dx}$.

(b) Examine whether the following function is even or odd :

$$f(x) = \log_e (x + \sqrt{x^2 + 1})$$
 $2 \times 7 = 14$

3. (a) Evaluate:

$$Lt \quad \frac{\tan 2x - 2\sin x}{x^3}$$

(b) The function $f(x) = \frac{2x^2 - 8}{x - 2}$ is undefined

at x = 2. What value must be assigned to f(2), if f(x) is to be continuous at x = 2? $2 \times 7 = 14$

4. (a) Integrate:

$$\int \frac{\mathrm{x}\mathrm{e}^{\mathrm{x}} \mathrm{d}\mathrm{x}}{(\mathrm{x}+1)^2}$$

(b) Find the equation of the normal to the parabola $y^2 = 3x$ which is perpendicular to the line y = 2x + 4. $2 \times 7 = 14$

BET-021

P.T.O.

- 5. (a) Express $\frac{1}{1 \cos \theta + 2i \sin \theta}$ in the form of A + iB.
 - (b) Draw a rough sketch of the curve $\frac{x^2}{4} + \frac{y^2}{9} = 1$; and evaluate the area of the region under the curve and above the x-axis. $2 \times 7 = 14$

(a) Verify that $B^{T}A^{T} = (AB)^{T}$ when $A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ 2 & 0 \\ -1 & 1 \end{bmatrix}.$

(T denotes Transpose)

(b) Show that $\begin{vmatrix} a & b-c & c-b \\ a-c & b & c-a \\ a-b & b-a & c \end{vmatrix}$ = (a + b - c) (b + c - a) (c + a - b). $2 \times 7 = 14$

BET-021

6.

4

7. (a) Find the mean and the median for the following data:

Weight in kg	No. of Persons
36 - 40	14
41 - 45	26
46 - 50	40
51 - 55	53
56 - 60	50
61 - 65	37
66 - 70	25

(b)

Find the mean deviation of the following series :

X	Frequency
10	3
11	12
12	18
13	12
÷ 14	3
Total	48

2×7=14

BET-021

1

5

1,000