DIPLOMA IN CIVIL ENGINEERING（DCLE（G））／ DIPLOMA IN MECHANICAL ENGINEERING （DME）／DCLEVI／DMEVI／DELVI／DECVI／ DCSVI／ACCLEVI／ACMEVI／ACELVI／ ACECVI／ACCSVI

ロロア曰ア Term－End Examination

December， 2017

BET－011 ：MATHEMATICS－I

Time ： 2 hours
Maximum Marks ： 70
Note：Question number 1．is compulsory．Attempt any four questions out of the remaining questions．Use of scientific calculator is permitted．

1．Attempt any seven questions ：
（a）Find the value of antilog $\overline{1} \cdot 2$ ．
（b）Find the sum of the A．P．

$$
1,4,7, \ldots \text { up to } 23 \text { terms. }
$$

（c）Find the value of $\operatorname{cosec} 30^{\circ} \cot 45^{\circ} \tan ^{2} 60^{\circ}$.
（d）What is the meaning of the following shape in a flow chart？

(e) Find the equation of a line passing through ($3,-5$) and parallel to the line joining $(1,2)$ and (-3, 4).
(f) Find the co-ordinates of the point which divides the join of $(3,-4)$ and $(-5,-3)$ externally in the ratio of $3: 4$.
(g) Express $\sqrt[4]{16 / 27}$ in the simplest form.
(h) Find the equation of a circle with centre $(3,-2)$ and touches the x-axis.
(i) The vertices of a triangle are at the points

$$
a=(2,-1,3) ; b=(4,2,3) ; c=(6,3,4) .
$$

Find the direction cosines of the vector $\overrightarrow{\mathrm{AB}}$.
2. (a) Solve the following quadratic equation :

$$
\frac{1}{a+b+x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}, a+b \neq 0
$$

(b) Prove that

$$
\frac{1}{\log _{a} a b c}+\frac{1}{\log _{b} a b c}+\frac{1}{\log _{c} a b c}=1
$$

(c) Find the term independent of x in the expansion $\left(\mathrm{x}-\frac{1}{\mathrm{x}}\right)^{12}$. $\quad 5+5+4$
3. (a) Find the $2^{\text {nd }}$ term of an A.P. whose $6^{\text {th }}$ term is 12 and $8^{\text {th }}$ term is 22.
(b) The sum of 6 terms of a G.P. is nine times the sum of the first three terms. Find the common ratio.
(c) If two G.M.'s g_{1} and g_{2} are inserted between two numbers whose A.M. is A, then

$$
2 \mathrm{~A}=\frac{\mathrm{g}_{1}^{2}}{\mathrm{~g}_{2}}+\frac{\mathrm{g}_{2}^{2}}{\mathrm{~g}_{1}}
$$

4. (a) Solve the equation

$$
\sin 2 x+\sin 6 x+\sin 4 x=0
$$

(b) If $\cos \theta=\frac{3}{5}$, find the value of $\cot \theta+\operatorname{cosec} \theta$.
(c) Prove that

$$
\sec ^{4} \theta-\sec ^{2} \theta=\tan ^{4} \theta+\tan ^{2} \theta . \quad 4+5+5
$$

5. (a) The angle of elevation of the top of a tower from two points at a distance of x and y metres from the base and in the same straight line with it, are complementary. Prove that the height of the tower is $\sqrt{x y}$ metres.
(b) In a triangle ABC , given $\mathrm{a}=20 \mathrm{~cm}$, $\mathrm{b}=30 \mathrm{~cm}, \mathrm{c}=21 \mathrm{~cm}$, find $\tan \frac{\mathrm{C}}{2}$.
(c) Find the principal value of $\operatorname{cosec}^{-1}(-1)$. $6+5+3$
6. (a) Find equation of the line passing through the point $(2,2)$, the sum of whose intercepts on co-ordinate axes is 9 .
(b) Prove that the tangent to the circle $x^{2}+y^{2}=5$ at the point (1,-2) also touches the circle

$$
x^{2}+y^{2}-8 x+6 y+20=0
$$

(c) Find the equation of a parabola whose focus is $(-1,-2)$ and directrix is the line $x-2 y+3=0$. $4+5+5$
7. (a) Find the eccentricity, foci, length of the latus rectum of the ellipse

$$
3 x^{2}+4 y^{2}-12 x-8 y+4=0
$$

(b) If

$$
\begin{aligned}
& \vec{a}=\hat{i}-2 \hat{j}+3 \hat{k} \\
& \vec{b}=\hat{i}-3 \hat{\mathbf{k}},
\end{aligned}
$$

find $|\vec{b} \times 2 \vec{a}|$.
(c) If $\overrightarrow{\mathrm{a}}=3 \hat{\mathrm{i}}-\hat{\mathrm{j}}-4 \hat{\mathbf{k}}$

$$
\begin{aligned}
& \overrightarrow{\mathrm{b}}=-2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}-3 \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{c}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}},
\end{aligned}
$$

find \vec{a} unit vector parallel to
$3 \vec{a}-2 \vec{b}+4 \vec{c}$.

