DIPLOMA IN CIVIL ENGINEERING DCLE(G) / DCLEVI

Term-End Examination

CICID15 December, 2017

BCE-045 : CONSTRUCTION DRAWING

Time: 2 hours
Maximum Marks : 70

Note: Part A is to be attempted on answer script and Part B on a drawing sheet. Use of calculator is allowed.

PART A

Attempt any five questions.

1. Which types of drawings are required for construction of any structure? Explain.
2. Show any seven symbols of electric and sanitary installation in a tabular form.
3. What are the various types of wooden joints ? Explain any one with the help of neat sketches.7
4. What are the main considerations for fixing
dimensions of a footing? Explain. 7
5. Define (a) Voussoir, (b) Extrados, (c) Pier, and (d) Haunch. 7
6. Show by means of line diagrams the various types of steel roof trusses. 7
7. Show by means of a neat sketch the reinforcement details of a simple two-way slab. 7
BCE-045 1 P.T.O.

PART B

Attempt question no. 8 which is compulsory and any one question from the remaining. Assume suitable scale and mention it.
8. Draw the cross-section and longitudinal section of an R.C.C. beam from the following data :
(i) Size of the beam $=300 \times 600 \mathrm{~mm}$
(ii) Clear span $=\mathbf{3} \cdot 0$ metre
(iii) Wall thickness $=\mathbf{3 0 0} \mathbf{~ m m}$
(iv) Bearing on wall $=\mathbf{3 0 0} \mathrm{mm}$ (each side)
(v) Main reinforcement = 3 Nos $20 \mathrm{~mm} \phi$ bars
(vi) Stirrups $=8 \mathrm{~mm} \phi$ @ $200 \mathrm{c} / \mathrm{c}$
(vii) Anchor bar $=2$ Nos, $12 \mathrm{~mm} \phi$

Assume and mention missing data, if any.
9. A single leaf, fully glazed wooden door of size $1.20 \mathrm{~m} \times 2.10 \mathrm{~m}$ with two glass panels inserted is provided in a living room.
(i) Draw the elevation of the door. 12
(ii) Draw the sectional plan of the door. 8
10. Draw the sectional plan and sectional elevation of one-way R.C.C. slab with the following data :

Size of room $=3.0 \mathrm{~m} \times 7.0 \mathrm{~m}$
Bearing on wall $=300 \mathrm{~mm}$
Slab thickness $(\mathrm{t})=150 \mathrm{~mm}$
Main reinforcement $=10 \mathrm{~mm} \phi$ @ $150 \mathrm{c} / \mathrm{c}$
Distribution bars $=8 \mathrm{~mm} \phi @ 200 \mathrm{c} / \mathrm{c}$
Assume and mention missing data, if any.

