No. of Printed Pages: 3

BCE-045

DIPLOMA IN CIVIL ENGINEERING DCLE(G) / DCLEVI

Term-End Examination

00015

December, 2017

BCE-045: CONSTRUCTION DRAWING

Time: 2 hours Maximum Marks: 70

Note: Part A is to be attempted on answer script and Part B on a drawing sheet. Use of calculator is allowed.

PART A

Attempt any five questions.

- 1. Which types of drawings are required for construction of any structure? Explain.
- 2. Show any seven symbols of electric and sanitary installation in a tabular form.
- 3. What are the various types of wooden joints?
 Explain any one with the help of neat sketches.
- 4. What are the main considerations for fixing dimensions of a footing? Explain.
- 5. Define (a) Voussoir, (b) Extrados, (c) Pier, and (d) Haunch.
- 6. Show by means of line diagrams the various types of steel roof trusses.
- 7. Show by means of a neat sketch the reinforcement details of a simple two-way slab.

7

7

7

PART B

Attempt question no. 8 which is **compulsory** and any **one** question from the remaining. Assume suitable scale and mention it.

- 8. Draw the cross-section and longitudinal section of an R.C.C. beam from the following data:

 15
 - (i) Size of the beam = 300×600 mm
 - (ii) Clear span = 3.0 metre
 - (iii) Wall thickness = 300 mm
 - (iv) Bearing on wall = 300 mm (each side)
 - (v) Main reinforcement = $3 \text{ Nos } 20 \text{ mm } \phi \text{ bars}$
 - (vi) Stirrups = $8 \text{ mm } \phi @ 200 \text{ c/c}$
 - (vii) Anchor bar = 2 Nos, $12 \text{ mm } \phi$

Assume and mention missing data, if any.

- 9. A single leaf, fully glazed wooden door of size $1.20 \text{ m} \times 2.10 \text{ m}$ with two glass panels inserted is provided in a living room.
 - (i) Draw the elevation of the door. 12
 - (ii) Draw the sectional plan of the door. 8

10. Draw the sectional plan and sectional elevation of one-way R.C.C. slab with the following data: 2

20

Size of room = $3.0 \text{ m} \times 7.0 \text{ m}$

Bearing on wall = 300 mm

Slab thickness (t) = 150 mm

Main reinforcement = 10 mm ϕ @ 150 c/c

Distribution bars = $8 \text{ mm } \phi @ 200 \text{ c/c}$

Assume and mention missing data, if any.