No. of Printed Pages: 5

BCE-041

DIPLOMA IN CIVIL ENGINEERING DCLE(G) / DCLEVI

Term-End Examination

December, 2017

00287

BCE-041 : THEORY OF STRUCTURES - II

Time : 2 hours

Maximum Marks : 70

Note: Question no. 1 is compulsory. Attempt any other four questions. All questions carry equal marks. Use of scientific calculator is permitted.

- Choose the most appropriate answer from the given alternatives in questions (a) to (g) below: 7×2=14
 - (a) The partial factor of safety for material strength for reinforcement is
 - (i) **1.5**
 - (ii) **2**
 - (iii) 1·51
 - (iv) 1·15

BCE-041

1

- (b) The final vertical deflection due to all loads of a member should be
 - (i) $< \frac{l_{ef}}{350}$ (ii) $< \frac{l_{ef}}{250}$ (iii) $> \frac{l_{ef}}{350}$ (iv) $> \frac{l_{ef}}{350}$

$$(1v) > \frac{e_1}{250}$$

(c) Minimum tension reinforcement in beams is

(i)	0.85 bd
	fy
(ii)	$\frac{85 \text{ bd}}{\text{fy}}$
(iii)	$\frac{0.4 \text{ bd}}{\text{fy}}$

(iv) 4%

- (d) For slabs, the maximum spacing between two parallel main reinforcing bars shall be
 - (i) $3 \times d$
 - (ii) $5 \times d$
 - (iii) 300 mm
 - (iv) whichever is less of (i) and (iii)

BCE-041

- (e) Effective length of a column which is fixed at both ends is taken as
 - (i) 0.85 l
 - (ii) 0.80 *l*
 - (iii) l
 - (iv) 0.65 l

(f) The modular ratio is determined by

(i)
$$m = \frac{200}{3 \sigma_{cbc}}$$

(ii)
$$m = \frac{280}{\sigma_{cbc}}$$

(iii)
$$m = \frac{280}{3 \sigma_{cbc}}$$

(iv)
$$m = \frac{80}{3 \sigma_{cbc}}$$

where σ_{cbc} = Permissible stress in concrete in bending compression

- (g) According to IS : 456, the maximum compressive strain in concrete in bending is equal to
 - (i) 0.0002
 - (ii) **0.0035**
 - (iii) $0.002 + \frac{f_{ck}}{E_c}$

(iv)
$$\frac{0.670 \text{ f}_{ck}}{\text{E}_c}$$

BCE-041

P.T.O.

- 2. A simply supported beam of 4.5 m span carries a uniformly distributed load of 30 kN/m inclusive of self-weight. The width of the beam is 230 mm and is reinforced on tension side only. Design the smallest concrete section and area of reinforcement. Use M 20 grade concrete and mild steel reinforcement. Assume partial safety factor for load equal to 1.5.
- Design longitudinal reinforcement for a circular column of diameter 350 mm with lateral ties for a factored load of 1800 kN and effective length 2.75 m for the M 20 concrete and Fe 415 steel.
- 4. Design a roof slab over a passage of size 14.0 m × 3.0 m, provided at the entrance of a public building. The beam is supported by a 230 mm wide beam and carries a superimposed load of 3.1 kN/m². Use M 20 mix and Fe 415 grade steel. Assume mild environment.
- 5. Design a two-way slab for a room of size $4 \text{ m} \times 5 \text{ m}$ with discontinuous and simply supported edges on all sides with corners prevented from lifting to support a live load of 4 kN/m^2 . Use M 20 grade concrete and Fe 415 HYSD bars.

Moment coefficients $\alpha_x = 0.076$, $\alpha_y = 0.056$. 14

BCE-041

4

14

14

14

6. Design an RC footing for a masonry wall 375 mm thick carrying a superimposed load of 200 kN/m. The bearing capacity of soil is 150 kN/m²;

 $f_{ck} = 20 \text{ N/mm}^2$, $f_y = 415 \text{ N/mm}^2$ and Nominal cover = 50 mm.

7. Design one of the flights of 'waist slab' type stairs of a school building spanning between landing beams to suit the following data :

> Number of steps = 12, Tread = 300 mm, Riser = 160 mm, Width of landing beam = 400 mm

Materials : M 20 concrete and Fe 415 steel

- 8. Write short notes on any *four* of the following: $4 \times 3\frac{1}{2} = 14$
 - (a) Limit State of Serviceability
 - (b) Flanged Reinforced Concrete Section
 - (c) Development Length
 - (d) Working Stress Method of Design
 - (e) Cantilever Type Retaining Wall
 - (f) Overhead Water Tanks
 - (g) Types of Footings

BCE-041

14

14