No. of Printed Pages : 5

BAR-024

BACHELOR OF ARCHITECTURE (B.Arch.)

Term-End Examination

00252

December, 2017

BAR-024 : THEORY OF STRUCTURES - III

Time : 3 hours

Maximum Marks : 70

- Note: Question no. 1 is compulsory. Attempt any four questions from the remaining ones. Use of scientific calculator is permitted. All questions carry equal marks.
- 1. Choose the most appropriate option in questions (a) to (g) given below : $7 \times 2 = 14$
 - (a) The degree of static indeterminacy of a propped cantilever beam is
 - (i) 1
 - (ii) 2
 - (iii) **3**
 - (iv) 4
 - (b) In pin-jointed trusses, members are subjected to
 - (i) axial forces
 - (ii) shear forces
 - (iii) moments
 - (iv) axial and shear forces

BAR-024

1

P.T.O.

- (c) Out of the following, the most ductile material is
 - (i) Brick
 - (ii) Stone
 - (iii) Concrete
 - (iv) Steel
- (d) The shape of bending moment diagram for a simply supported beam which is subjected to a point load at its centre is
 - (i) rectangular
 - (ii) triangular
 - (iii) circular
 - (iv) parabolic
- (e) Buckling may be expected in
 - (i) short columns
 - (ii) long columns
 - (iii) both the above depending on material of the column
 - (iv) circular columns

BAR-024

- (f) Which is **not** an assumption taken in the theory of pure bending?
 - (i) Material is homogeneous
 - (ii) Material is isotropic
 - (iii) Plane sections remain plane
 - (iv) Plane sections are subjected to warping
- (g) An internal hinge in a beam may transfer
 - (i) shear force
 - (ii) bending moment
 - (iii) shear force and axial force
 - (iv) shear force and bending moment
- 2. (a) Briefly discuss how load carrying capacity of a column may be enhanced.
 - (b) What is a Funicular Polygon ? Explain briefly.
- 3. Draw the SFD and BMD for the beam shown in Figure 1. It is a cantilever subjected to a downward load P at the free end B and an upward force P at point C.

BAR-024

3

Figure 1

P.T.O.

7

14

7

4. (a) Find the CG of the lamina shown in Figure 2.

Figure 2

- (b) Explain a method of analysis of a simple pin-jointed plane truss.
- 5. (a) Write the parallel axis theorem for moment of inertia.
 - (b) Determine moment of inertia of a rectangular lamina shown in Figure 3, about an axis x-x which passes through its CG.

4

7

7

7

- 6. (a) What do you understand by equations of static equilibrium ? Explain briefly.
 - (b) Draw the deflected shape of the beam shown in Figure 4.

Figure 4

- 7. Write short notes on any *two* of the following topics: $2 \times 7 = 14$
 - (a) Composite Sections
 - (b) Graphical Method of Analysis of a Truss
 - (c) Resultant of Coplanar Forces
 - (d) Effect of Flexural Stiffness of a Beam on its Deflection

BAR-024

500

7

7