No. of Printed Pages: 3

BIME-015

B. Tech. - VIEP - MECHANICAL ENGINEERING (BTMEVI)

December, 2017

BIME-015 : REFRIGERATION AND AIR CONDITIONING

Time: 3 hours Maximum Marks: 70

Note: Attempt any seven questions. All questions carry equal marks. Use of Steam table, Refrigeration charts, Mollier diagram, Psychrometric chart and Scientific calculator is permitted.

- 1. A domestic food freezer maintains a temperature of -15°C. The ambient air temperature is 30°C. If heat leaks into the freezer at a continuous rate of 1.75 kJ/sec, what is the least power necessary to pump this heat out continuously?
- 2. Explain the vapour compression cycle with the help of flow, T-s and p-h diagrams.
- 3. What is Refrigeration? What is refrigerating effect? What is a tonne of refrigeration?

1

BIME-015

P.T.O.

10

10

4.	Derive the expression for the maximum COP of an absorption refrigeration system.					
5.	A refrigerator using R-134a operates on an ideal vapour compression cycle between 0·12 and 0·7 MPa. The mass flow of refrigerant is 0·05 kg/sec. Determine					
	(a)	the rate of heat removal from the refrigerated space,				
	(b)	the power input to the compressor,				
	(c)	the heat rejection to the environment, and				
	(d)	the COP.	10			
6.	Atmospheric air at 1·0132 bar has a DBT of 32°C and a WBT of 26°C. Compute					
	(a) the partial pressure of water vapour,					
	(b)	the specific humidity,				
	(c)	(c) the dew point temperature,				
	(d)	the relative humidity,				
	(e)	the degree of saturation, and				
	(f)	the density of air in the mixture.	10			
7.		t do you understand by saturated and sturated air? What is relative humidity?	10			

BIME-015

8. A refrigeration machine is required to produce ice at 0°C from water at 20°C. The machine has a condenser temperature of 298 K while the evaporator temperature is 268 K. The relative efficiency of the machine is 50% and 6 kg of Freon-12 refrigerant is circulated through the system per minute. The refrigerant enters the compressor with a dryness fraction of 0·6. Specific heat of water is 4·187 kJ/kg-K and the latent heat of ice is 335 kJ/kg. Calculate the amount of ice produced in 24 hours. The table of properties of Freon-12 is given below:

10

10

Temperature (K)	Liquid heat (kJ/kg)	Latent heat (kJ/kg)	Entropy of liquid (kJ/kg)
298	59·7	138.0	0.2232
268	31.4	154.0	0.1251

- **9.** Discuss the effect of the following on the performance of a vapour compression system:
 - (a) Effect of suction pressure
 - (b) Effect of delivery pressure
 - (c) Effect of superheating
 - (d) Effect of sub-cooling of liquid
 - (e) Effect of suction temperature and condenser temperature
- 10. Define a Unitary System. Where is it commonly preferred? Explain a room air-conditioner with a neat sketch.

10