B.Tech. - VIEP - MECHANICAL ENGINEERING (BTMEVI)

1342 Term-End Examination

December, 2017

BIME-006 : THERMOFLUID ENGINEERING

Time: 3 hours
Maximum Marks : 70
Note: Answer any seven questions. All questions carry equal marks. Use of scientific calculator is permitted. Assume missing data suitably.

1. (a) How is the Mach number of a flow defined? What does a Mach number of 2 indicate?
(b) A tank is filled with oil whose density is $\rho=850 \mathrm{~kg} / \mathrm{m}^{3}$. If the volume of the tank is $\mathrm{V}=\mathbf{2} \mathrm{m}^{\mathbf{3}}$, determine the amount of mass in the tank.
(c) A A 100 litres container is filled with 1 kg of air at a temperature of $27^{\circ} \mathrm{C}$. What is the pressure in the container?

Take $\mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.
(d) Is it possible to accelerate a gas to a supersonic velocity in a converging nozzle? Explain in brief.
(e) Show that the Reynolds number for flow in a circular pipe of diameter D can be expressed as $\mathrm{R}_{\mathrm{e}}=\frac{4 \dot{\mathrm{~m}}}{\pi \mathrm{D} \mu} . \quad 5 \times 2=10$
2. (a) Someone claims that the shear stress at the centre of a circular pipe during fully developed laminar flow is zero. Do you agree with this claim? Explain.
(b) In a fully developed laminar flow in a circular pipe, the velocity at R/2 (midway between the wall surface and the centre line) is measured to be $8 \mathrm{~m} / \mathrm{s}$. Determine the velocity at the centre of the pipe. $5+5$
3. (a) The velocity profile in a fully developed laminar flow in a circular pipe of inner radius $R=2 \mathrm{~cm}$ in m / s, is given by $\mathbf{u}(\mathbf{r})=4\left(1-\frac{\mathbf{r}^{2}}{\mathrm{R}^{2}}\right)$. Determine the average and maximum velocities in the pipe and the volume flow rate.
(b) Define Drag and Lift. Why do we usually try to minimize drag? $\quad 5+5$
4. (a) Consider the steady two-dimensional velocity field given by

$$
\overline{\mathbf{V}}=(1.6+1.8 x) \hat{\mathbf{i}}+(1.5-1.8 y) \hat{\mathbf{j}}
$$

Verify that this flow field is incompressible.
(b) For a certain incompressible two-dimensional flow field, the velocity component in the y-direction is given by the equation $v=3 x y-x^{2} y$. Determine the velocity component in the x-direction, so that the continuity equation is satisfied.
5. (a) Differentiate between a nozzle and a diffuser.
(b) What is meant by choking in nozzle flows? $\quad 5+5$
6. Show that the discharge through a nozzle is maximum when there is a sonic condition at its throat.
7. What is a Rayleigh line ? Why do the end states
of a normal shock also lie on the Rayleigh line? 10
8. What do you mean by gross head, net head and efficiency of a turbine ? Explain the different types of efficiency of turbines.10
9. Explain the following in brief :
(a) Total Energy Line
(b) Hydraulic Gradient Line
(c) Pipes in Series
(d) Pipes in Parallel
(e) Equivalent Pipe
10. Prove that the maximum velocity in a circular pipe for a viscous flow is equal to two times the average velocity of the flow.

