BME-028

B.Tech. MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)

Term-End Examination

December, 2017

BME-028 : FLUID MECHANICS

Time : 3 hours

Maximum Marks : 70

Note : Attempt any **five** questions. All questions carry equal marks. Use of calculator is permitted.

1.	(a)	Explain the principle employed in manometers used for the measurement of	
		pressure.	4
	(b)	Describe with the help of neat sketches, different types of manometers.	5
	(c)	State the advantages of mechanical pressure gauges over manometers.	5
2.	(a)	Derive an expression for the depth of centre of pressure from free surface of liquid of an inclined plane surface submerged in the	
		liquid.	4

BME-028

P.T.O.

- (b) A circular plate 1.5 m diameter is submerged in water with its greatest and least depths below the surface being 2 m and 0.75 m respectively. Determine :
 - (i) The total pressure on one face of the plate
 - (ii) The position of centre of pressure
- **3.** (a) What are the assumptions made in Bernoulli's equation ?
 - (b) A venturimeter is to be fitted in a pipe 0.25 m diameter, where the pressure head is 7.6 m of the flowing liquid and the maximum flow is 8.1 m^3 per minute. Find the least diameter of the throat to ensure that the pressure head does not become negative. (Take $C_d = 0.96$)
- **4.** (a) Describe the different methods for the determination of the various coefficients for an orifice.
 - (b) A large tank having a circular orifice $6.45 \times 10^{-4} \text{ m}^2$ in area on its vertical side rests on a smooth horizontal surface. When the depth of water in the tank is 1.22 m, the discharge through the orifice is $1.9 \times 10^{-3} \text{ m}^3$ /sec and a horizontal force of 9.123 N in line with the centre of the orifice is required to keep the tank at rest. From this data, determine the coefficients C_v , C_c and C_d .

BME-028

2

10

10

4

6

- 5. The mean point velocities measured with the help of a pitot tube at mid-point and quarter point of a 0.2 m diameter pipe were found to be 1.5 m/sec and 1.35 m/sec respectively. If the flow in the pipe is turbulent, determine the discharge, friction factor and average height of roughness projections.
- 6. (a) Derive an expression for head loss in sudden expansion in the pipe. Also list all the assumptions made in the derivation.
 - (b) Find the loss of head when a pipe of diameter 200 mm is suddenly enlarged to a diameter of 400 mm. The rate of flow of water through the pipe is 250 litres/sec.
- 7. Using Buckingham's π -theorem, show that the velocity through a circular orifice is given by

$$\mathbf{v} = \sqrt{2gH} \,\phi \left[\frac{\mathbf{D}}{\mathbf{H}}, \frac{\mu}{\rho \,\mathbf{v} \,\mathbf{H}} \right],$$

where H is the head causing flow, D is the diameter of the orifice, μ is the coefficient of viscosity, ρ is the mass density and g is the acceleration due to gravity.

BME-028

14 P.T.O.

6

8

14

- 8. Write short notes on any *four* of the following: $4 \times 3\frac{1}{2} = 14$
 - (a) Boundary Layer Thickness
 - (b) Boundary Layer Separation
 - (c) Drag on Cylinder
 - (d) Flow Pattern Over a Rotating Cylinder
 - (e) Compressible and Incompressible Flow
 - (f) Meta Centre