B.Tech. MECHANICAL ENGINEERING

 (COMPUTER INTEGRATEDMANUFACTURING)
ロロ452
Term-End Examination
December, 2017

BME-028 : FLUID MECHANICS

Time : 3 hours
Maximum Marks : 70
Note: Attempt any five questions. All questions carry equal marks. Use of calculator is permitted.

1. (a) Explain the principle employed in manometers used for the measurement of pressure.4
(b) Describe with the help of neat sketches, different types of manometers.5
(c) State the advantages of mechanical pressure gauges over manometers.
2. (a) Derive an expression for the depth of centre of pressure from free surface of liquid of an inclined plane surface submerged in the liquid.
(b) A circular plate 1.5 m diameter is submerged in water with its greatest and least depths below the surface being 2 m and 0.75 m respectively. Determine :
(i) The total pressure on one face of the plate
(ii) The position of centre of pressure
3. (a) What are the assumptions made in Bernoulli's equation?
(b) A venturimeter is to be fitted in a pipe 0.25 m diameter, where the pressure head is 7.6 m of the flowing liquid and the maximum flow is $8.1 \mathrm{~m}^{3}$ per minute. Find the least diameter of the throat to ensure that the pressure head does not become negative. (Take $\mathrm{C}_{\mathrm{d}}=0.96$)
4. (a) Describe the different methods for the determination of the various coefficients for an orifice.
(b) A large tank having a circular orifice $6.45 \times 10^{-4} \mathrm{~m}^{2}$ in area on its vertical side rests on a smooth horizontal surface. When the depth of water in the tank is 1.22 m , the discharge through the orifice is $1.9 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{sec}$ and a horizontal force of $9 \cdot 123 \mathrm{~N}$ in line with the centre of the orifice is required to keep the tank at rest. From this data, determine the coefficients $\mathrm{C}_{\mathrm{v}}, \mathrm{C}_{\mathrm{c}}$ and C_{d}.
5. The mean point velocities measured with the help of a pitot tube at mid-point and quarter point of a 0.2 m diameter pipe were found to be $1.5 \mathrm{~m} / \mathrm{sec}$ and $1.35 \mathrm{~m} / \mathrm{sec}$ respectively. If the flow in the pipe is turbulent, determine the discharge, friction factor and average height of roughness projections.
6. (a) Derive an expression for head loss in sudden expansion in the pipe. Also list all the assumptions made in the derivation.
(b) Find the loss of head when a pipe of diameter 200 mm is suddenly enlarged to a diameter of 400 mm . The rate of flow of water through the pipe is 250 litres/sec.
7. Using Buckingham's π-theorem, show that the velocity through a circular orifice is given by

$$
\mathrm{v}=\sqrt{2 \mathrm{gH}} \phi\left[\frac{\mathrm{D}}{\mathrm{H}}, \frac{\mu}{\rho \mathrm{vH}}\right],
$$

where H is the head causing flow, D is the diameter of the orifice, μ is the coefficient of viscosity, ρ is the mass density and g is the acceleration due to gravity.
8. Write short notes on any four of the following :

$$
4 \times 3 \frac{1}{2}=14
$$

(a) Boundary Layer Thickness
(b) Boundary Layer Separation
(c) Drag on Cylinder
(d) Flow Pattern Over a Rotating Cylinder
(e) Compressible and Incompressible Flow
(f) Meta Centre

