B.Tech. MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) / BTMEVI

Term-End Examination

$\square \square 192$
December, 2017

BME-019 : ENGINEERING THERMODYNAMICS

Time : 3 hours Maximum Marks: 70
Note: Answer any seven questions. All questions carry equal marks. Use of calculator, steam table and Mollier chart is permitted.

1. (a) Explain and differentiate between Extensive and Intensive properties with the help of examples.
(b) Define Thermodynamic System. Explain different types of thermodynamic systems with the help of examples.
2. (a) What is the concept of Continuum ? How will you define density and pressure using this concept?
(b) When the valve of the evacuated bottle (Figure 1) is opened, atmospheric air rushes into it. If the atmospheric pressure is 101.325 kPa , and $0.6 \mathrm{~m}^{3}$ of air (measured at atmospheric conditions) enters into the bottle, calculate the work done by air.

Figure 1
3. (a) A stationary mass of gas is compressed without friction from an initial state of $0.3 \mathrm{~m}^{3}$ and 0.105 MPa to a final state of $0.15 \mathrm{~m}^{3}$ and 0.105 MPa , the pressure remains constant during the process. How much does the initial energy of the gas change?
(b) Show that Internal Energy is the property of a system.
4. A fluid is confined in a cylinder by a spring-loaded, frictionless piston so that the pressure in the fluid is a linear function of the volume ($\mathrm{P}=\mathrm{a}+\mathrm{bV}$). The internal energy of the fluid is given by the following relation : $\mathrm{u}=34+3 \cdot 15 \mathrm{pV}$; where u is in kJ, p in kPa and V in m^{3}.

If the fluid changes from an initial state of 170 $\mathrm{kPa}, 0.03 \mathrm{~m}^{3}$ to a final state of $400 \mathrm{kPa}, 0.06 \mathrm{~m}^{3}$, with no work other than that done on the piston, find the direction and magnitude of the work and heat transfer.
5. (a) Which is the more effective way to increase the efficiency of a Carnot engine to increase T_{1}, keeping T_{2} constant or to decrease T_{2}, keeping T_{1} constant?
(b) A domestic food freezer maintains a temperature of $-15^{\circ} \mathrm{C}$. The ambient air temperature is $30^{\circ} \mathrm{C}$. If heat leaks into the freezer at a continuous rate of $1.75 \mathrm{~kJ} / \mathrm{sec}$, what is the least power necessary to pump this heat out continuously?
6. Two identical bodies of constant heat capacity are at the same initial temperature T_{i}. A refrigerator operates between these two bodies until one body is cooled to temperature T_{2}. If the bodies remain at constant pressure and undergo no change of phase, show that the minimum amount of work needed to do this is

$$
\begin{equation*}
\mathrm{W}_{(\min)}=\mathrm{C}_{\mathrm{p}}\left(\frac{\mathrm{~T}_{\mathrm{i}}^{2}}{\mathrm{~T}_{2}}+\mathrm{T}_{2}-2 \mathrm{~T}_{\mathrm{i}}\right) \tag{10}
\end{equation*}
$$

7. A steam power plant is proposed to operate between the pressures of 10 kPa and 2 MPa with a maximum temperature of $400^{\circ} \mathrm{C}$, as shown in the figure. Determine the maximum efficiency possible from the power cycle.

Figure 2
8. (a) What is refrigeration? How is (i) ice, and (ii) dry ice used for the purpose of refrigeration?
(b) Show that
$(\mathrm{COP})_{\text {Heat Pump }}=(\mathrm{COP})_{\text {Refrigerator }}+1.5$
9. A steam power station uses the following cycle :

Steam at boiler outlet - $150 \mathrm{bar}, 550^{\circ} \mathrm{C}$
Reheat at 40 bar to $550^{\circ} \mathrm{C}$
Condenser at 0.1 bar
Using the Mollier chart and assuming ideal process, find the
(a) Quality at turbine exhaust
(b) Cycle efficiency
(c) Steam rate

