B.Tech. MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) BTCLEVI/BTMEVI/BTELVI/BTCSVI/BTECVI

Term-End Examination

Da932
December, 2017

BME-009 : COMPUTER PROGRAMMING AND APPLICATIONS

Time: 3 hours

Maximum Marks : 70
Note: Answer any five questions. All questions carry equal marks. Use of scientific calculator is permitted. Assume missing data, if any.

1. (a) Obtain an approximate root for the following equation, rounded off to three decimal places, using Regula-Falsi method : 7

$$
x \sin x-1=0
$$

(b) Find a root of $x^{3}-2 x-5=0$ using bisection method, where the root lies between 2 and 3.
2. (a) Solve the system of equations

$$
\begin{aligned}
& x_{1}+2 x_{2}-3 x_{3}+x_{4}=-5 \\
& x_{2}+3 x_{3}+x_{4}=6 \\
& 2 x_{1}+3 x_{2}+x_{3}+x_{4}=4 \\
& x_{1}+x_{3}+x_{4}=1
\end{aligned}
$$

using Cramer's rule.
(b) Using the Gauss elimination method, show that the system of equations
$\left[\begin{array}{rrrr}3 & 2 & -1 & -4 \\ 1 & -1 & 3 & -1 \\ 2 & 1 & -3 & 0 \\ 0 & -1 & 8 & -5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{r}10 \\ -4 \\ 16 \\ 3\end{array}\right]$
is inconsistent.
3. (a) From the following table, estimate the number of persons earning wages between 60 and 70 rupees :

Wages (in rupees)	No. of Persons (in thousands)
Below 40	250
$40-60$	120
$60-80$	100
$80-100$	70
$100-120$	50

(b) Using Bessel's formula, find the value of $f(5)$ when the values of x and $f(x)$ are given by the following table :

$\mathrm{x}:$	0	4	8	12
$\mathrm{f}(\mathrm{x}):$	143	158	177	199

4. (a) Use Lagrange's formula inversely to obtain the value of x corresponding to $y(x)=85$ for the values given as : $y(2)=94 \cdot 8 ; y(5)=87.9$; $y(8)=81 \cdot 3 ; y(14)=68 \cdot 7$.
(b) Compute the value of the integral

$$
\int_{0 \cdot 2}^{1 \cdot 4}\left(e^{x}+\sin x-\log x\right) d x
$$

by Trapezoidal rule.
5. (a) Evaluate $\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}$, using Simpson's $\frac{3}{8}$ rule by taking $\mathrm{h}=\frac{1}{6}$.
(b) Solve the differential equation $\frac{d y}{d x}=-x y^{2}$, $y=2$ at $x=0$, by Euler's modified method and obtain y at $x=0.1$ and $x=0.2$.
6. (a) Solve the following initial value problem using Runge-Kutta method of order two :

$$
10 y^{\prime}=x^{2}+y^{2}, y(0)=1
$$

Find $y(0 \cdot 2)$ taking $h=0 \cdot 1$.
(b) Write a C++ program to calculate and print the roots of a quadratic equation $a x^{2}+b x+c=0$.
7. (a) Explain the following with examples : 9
(i) Polymorphism
(ii) Inheritance
(iii) Friend Function
(b) Write a C++ program to evaluate the values of $\sin x$ given by

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots
$$

