No. of Printed Pages : 4

B.Tech. MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) BTCLEVI/BTMEVI/BTELVI/BTCSVI/BTECVI

Term-End Examination

00932

December, 2017

BME-009 : COMPUTER PROGRAMMING AND APPLICATIONS

Time : 3 hours

Maximum Marks : 70

- **Note :** Answer any **five** questions. All questions carry equal marks. Use of scientific calculator is permitted. Assume missing data, if any.
- (a) Obtain an approximate root for the following equation, rounded off to three decimal places, using Regula-Falsi method : 7

 $x\sin x - 1 = 0$

(b) Find a root of $x^3 - 2x - 5 = 0$ using bisection method, where the root lies between 2 and 3.

BME-009

P.T.O.

2. (a) Solve the system of equations

$$x_1 + 2x_2 - 3x_3 + x_4 = -5$$

$$x_2 + 3x_3 + x_4 = 6$$

$$2x_1 + 3x_2 + x_3 + x_4 = 4$$

$$x_1 + x_3 + x_4 = 1$$

using Cramer's rule.

(b) Using the Gauss elimination method, show that the system of equations

3	2	-1	-4]	$\begin{bmatrix} x_1 \end{bmatrix}$		10
1	-1	3	-1	x ₂	-	- 4
2	1	- 3	0	x ₃	_	16
0	-1	8	-5			3

is inconsistent.

(a) From the following table, estimate the number of persons earning wages between 60 and 70 rupees:

Wages (in rupees)	No. of Persons (in thousands)	
Below 40	250	
40 - 60	120	
60 - 80	100	
80 - 100	70	
100 - 120	50	

BME-009

2

7

(b) Using Bessel's formula, find the value of f(5) when the values of x and f(x) are given by the following table :

x :	0	4	8	12
f(x) :	143	158	177	199

- 4. (a) Use Lagrange's formula inversely to obtain the value of x corresponding to y(x) = 85 for the values given as : y(2) = 94.8; y(5) = 87.9; y(8) = 81.3; y(14) = 68.7.
 - (b) Compute the value of the integral

$$\int_{0\cdot 2}^{1\cdot 4} (e^x + \sin x - \log x) dx$$

by Trapezoidal rule.

- 5. (a) Evaluate $\int_{0}^{1} \frac{dx}{1+x^{2}}$, using Simpson's $\frac{3}{8}$ rule by taking $h = \frac{1}{6}$. 7
 - (b) Solve the differential equation $\frac{dy}{dx} = -xy^2$, y = 2 at x = 0, by Euler's modified method and obtain y at x = 0.1 and x = 0.2. 7

L

P.T.O.

7

7

6. (a) Solve the following initial value problem using Runge-Kutta method of order two :

$$10y' = x^2 + y^2$$
, $y(0) = 1$
Find $y(0.2)$ taking $h = 0.1$. 6

(b) Write a C++ program to calculate and print the roots of a quadratic equation $ax^2 + bx + c = 0.$

7. (a) Explain the following with examples :

- (i) Polymorphism
- (ii) Inheritance
- (iii) Friend Function
- (b) Write a C++ program to evaluate the values of sin x given by

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots \qquad 5$$

. .

Ι.

8

9