No. of Printed Pages: 4

BIEE-022

B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

00692

Term-End Examination

December, 2017

BIEE-022 : POWER SYSTEMS

Time : 3 hours

Maximum Marks: 70

- Note: Attempt any five questions. All questions carry equal marks. Assume missing data suitably (if any). Use of scientific calculator is allowed.
- (a) What is the difference between One-line diagram and Impedance diagram ? Explain with the help of examples.
 - (b) Define per unit impedance and give the expression for base impedance and per unit impedance, referred to a new base. Also list the advantages of the per unit system.

l

7

2. (a) A generator supplying an unbalanced load measures the following phase-to-ground voltages :

$$\begin{split} V_a &= 18 \cdot 0 \ \angle \ 0^\circ \ kV, \ V_b = 13 \cdot 3 \ \angle - 132^\circ \ kV, \\ V_c &= 12 \cdot 0 \ \angle + 110^\circ \ kV. \end{split}$$

Find the symmetrical components of the set of phasor voltages.

7

7

7

ł

(b) A transmission line of inductance 0·1 H and resistance 5 Ω is suddenly short-circuited at the far end, as shown in the figure. Write the expression for the short-circuit current i(t). Find approximately the value of the maximum momentary short-circuit current.

Figure 1

3. (a) Discuss the assumptions made for short-circuit analysis of a power system. Deduce the expression for system impedance matrix in bus frame of reference (Z_{Bus}) using singular transformation.

BIEE-022

(b) A 3-phase, 15 MVA, 11 kV, 50 Hz generator with solidly earthed neutral has sub-transient reactance X''_d of 20%, direct axis transient reactance X'_d of 25% and synchronous reactance X_d of 60%. Negative sequence reactance $X_2 = 20\%$ and zero sequence reactance $X_0 = 8\%$. The generator is operated on the open circuit when a fault occurs. Take $E_0 = 1.0$.

> If the fault is a 3-phase short without an impedance, compute the initial symmetrical sub-transient, transient and sustained p.u. values of the line current under faulty conditions.

- 4. (a) Develop necessary equations and describe the load flow solution using the Gauss-Siedel method.
 - (b) Classify various types of buses in power systems for load flow studies. Discuss Nodal Admittance Matrix.
- 5. (a) Define and derive the swing equation for a finite machine connected to an infinite bus. Discuss the applications in the study of power system stability.

BIEE-022

3

P.T.O.

7

7

7

- (b) For improving the transient stability of a power system, discuss the following discrete supplementary control terms :
 - (i) Dynamic braking
 - (ii) High speed circuit breaker reclosing
 - (iii) Independent control of excitation
 - (iv) Series capacitor insertion
- **6.** (a) Derive the expressions for reflection and refraction coefficients of voltage and current waves for the following cases :
 - (i) Terminated through resistance
 - (ii) Terminated through a cable
 - (b) Explain surge impedance and velocity of propagation of travelling waves. A 500 kV, 2 μ -sec rectangular surge travels along the line terminated by a capacitor of 2500 pF. Determine the voltage across the capacitance and reflected voltage wave, if the surge impedance loading of the line is 400 Ω .
- 7

7

- 7. Write short notes on any two of the following: $2 \times 7 = 14$
 - (a) Bewley's Lattice Diagram
 - (b) Load Flow Analysis using Fast Decoupled Method
 - (c) Surge Impedance