No. of Printed Pages: 3

BIEE-021

B.Tech. – VIEP – ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination

December, 2017

00982

BIEE-021 : CONTROL SYSTEMS

Time : 3 hours

Maximum Marks : 70

Note : Attempt any **five** questions. Each question carries equal marks. Use of scientific calculator is permitted.

- (a) What are the basic differences between Open and Closed loop control systems ? Explain with examples. Which one is preferred mostly and why ?
 - (b) Write a short note on Mason's Gain Formula which is used for solving the signal flow graph with suitable example.
- 2. (a) Write a short note on Steady State Error. Explain the concepts of Relative Stability and Absolute Stability
 - (b) Write the step-wise procedure for plotting the root locus for a given open-loop transfer function.

BIEE-021

T.

7

7

7

7

- 3. A unity feedback control system has its open-loop transfer function given by $G(s) = \frac{(4s+1)}{4s^2}$. Determine an expression for the time response when the system is subjected to
 - (a) unit impulse input function, and 7
 - (b) unit step input function.
- 4. Determine the stability of a closed-loop control system having characteristic equation as

$$s^{5} + s^{4} + 4s^{3} + 4s^{2} + 4s + 4 = 0.$$
 14

7

14

L

- 5. What are the advantages of plotting Bode plots? Explain the concepts of gain margin and phase margin. Also explain how relative stability is determined from these values.
- 6. Write short notes on any *two* of the following: $2 \times 7 = 14$
 - (a) Servo Motor
 - (b) Nyquist Criterion
 - (c) Compensators
 - (d) PID Controllers

BIEE-021

2

- 7. (a) Explain the relationship between the State equation and Transfer function.
 - (b) The transfer function of a system is given by

$$\frac{Y(s)}{U(s)} = \frac{s^2 + 3s + 2}{s^3 + 9s^2 + 26s + 24}.$$

Determine the state model by using the direct decomposition method.

BIEE-021

6

8