B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

$\square \square 322$ Term-End Examination

December, 2017

BIEE-010 : MICROCONTROLLERS

Time : 3 hours
Maximum Marks : 70

Note: Answer any seven questions. All questions carry equal marks. Assume data wherever required.

1. (a) Enlist the salient features of 8051 microcontrollers.5
(b) Explain various Program Status Word (PSW) registers.5
2. (a) Why are the Program Counter (PC) and Data Pointer (DPTR) registers of 8051, 16-bit wide, whereas the 8051 stack pointer register is only 8 -bit wide?
(b) List the factors to be considered while going for ROM, EPROM, EEPROM and Flash memory versions of microcontroller devices.
3. (a) State the addressing modes used in each of the following instructions:
(i) MOV A, \#30H
(ii) MOV R1, @40H
(iii) ADD A, @R2
(iv) MOV X @ DPTR, A
(v) ANL 46H, \#23H
(b) What are the instructions that can access the program memory? 5
4. (a) Write a sequence of instructions that sets the AC flag.
(b) What happens in the following examples? 7
(i) SJMP \$
(ii) MOV SP, \#74
(iii) JZ FEH
(iv) JC 02
(v) INC @ R3
(vi) DEC 51H
(vii) CPL 91H
5. (a) List all the JUMP and CALL instructions.

Describe conditional JMP instructions.
(b) Write a program to measure the width of a pulse appearing at pin INT0.
6. (a) Explain the importance of T 1 flag. 5
(b) With XTAL $=11.0597 \mathrm{MHz}$, find the TH1 value needed to have the following baud rates:
(i) 9600
(ii) 2400
(iii) 1200
7. Assuming that $\mathrm{XTAL}=22 \mathrm{MHz}$, write a program to generate a square wave of frequency 1 kHz on pin P1.2.
8. Assume that a $1-\mathrm{Hz}$ external clock is being fed into pin T1 (P3.5). Write a C program for counter 1 in mode 2 (8-bit auto reload) to count up and display the state of the TL1 count on P1. Start the count at 0 H .

$$
10
$$

9. Write a C program for the 8051 to transfer the letter "A" serially at 4800 baud continuously. Use 8 -bit data and 1-stop bit.
10. A switch is connected to pin P2.7. Using a simulator, write a program to monitor the status of SW and perform the following :
(a) If $\mathrm{SW}=0$, the DC motor moves clockwise.
(b) If $\mathrm{SW}=1$, the DC motor moves counter-clockwise.
