B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination

DD192 December, 2017

BIEE-008 : ELECTRO-MECHANICAL ENERGY CONVERSION – I

Time : 3 hours

Maximum Marks : 70

- **Note:** Attempt any **seven** questions out of ten. All questions carry equal marks. Use of scientific calculator is allowed. Make suitable assumptions, if needed.
- Develop the phasor diagram of a 1. (a) transformer under load single-phase conditions. Assume lagging power factor 5 load. Why is the short-circuit test performed on (b) the hv-side of a transformer ? Why is the core loss almost negligible in this test? 5
- **2.** (a) Explain Sumpner's test for testing two single-phase transformers.
 - (b) Explain why Sumpner's test is beneficial for finding the efficiency of transformers. 5

BIEE-008

P.T.O.

5

3.	Wha	t are the disadvantages of current and	
	voltage harmonics in transformers ? Explain how		
	these harmonics can be eliminated.		10
4.	(a)	Discuss briefly the essential and desirable conditions to be fulfilled for operating two three-phase transformers in parallel.	5
	(b)	Draw and explain schematically how a three-phase transformer can be connected with another three-phase transformer.	5
5.	(a)	Describe Swinburne's test with the help of	
		a neat diagram to find out the efficiency of	
		a d.c. machine.	7
	(b)	What are the main advantages and disadvantages of this test ?	3
6.	(a)	Why is the starting current very high in a d.c. motor ? How does the starter reduce the starting current to a safe value ? What	~
	(b)	Describe the four-point starter with a neat sketch.	5 5
7.	What of ar	is Armature Reaction ? Describe the effects mature reaction on the operation of d.c.	
	mach	ines. How is the armature reaction	
	minin	nized ?	10

10

l

- 8. Derive the EMF and torque equation of (a) a d.c. generator.
 - Neatly sketch and explain the external (b) characteristics of d.c. compound а generator.
- A 120 V d.c. shunt motor having an armature 9. circuit resistance of 0.2Ω and field circuit resistance of 60 Ω , draws a line current of 40 A at full load. The brush voltage drop is 3 V and rated full-load speed is 1800 rpm. Calculate : 5+5

- (a) The speed at half load
- (b) The speed at 125 percent full load
- **10.** (a) Distinguish between Singly excited and Doubly excited systems.
 - (b) For a singly-excited linear magnetic derive an expression for system. the electromagnetic torque. 5

3

5

5

5