No. of Printed Pages: 4

B.Tech. – VIEP – ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination

00042

December, 2017

BIEE-005 : ELECTROMAGNETIC THEORY

Time : 3 hours

Maximum Marks: 70

- **Note :** Attempt any **five** questions. All questions carry equal marks. Use of scientific calculator is allowed.
- 1. (a) Given the potential $\overline{V} = \frac{10}{r^2} \sin \theta \cos \phi$,
 - (i) find the electric flux density 'D' at $(2, \frac{\pi}{2}, 0).$
 - (ii) calculate the work done in moving a 10 nC charge from point A(1, 30°, 120°) to B(4, 90°, 60°).
 7
 - (b) State and explain the Gauss Divergence Theorem. Also mention its limitations and utilities.

BIEE-005

1

P.T.O.

7

BIEE-005

2.	(a)	Let $D = 2xy\hat{a}_x + x^2\hat{a}_y$ C/m ² , find the	
		following :	7
		(i) The volume charge density (ρ_V)	
		(ii) The flux through surface	
		0 < x < 1, 0 < z < 1, y = 1.	
	(b)	State and prove Stokes' Theorem. What are	
		the limitations and utilities of this	
		theorem ?	7
3.	(a)	Write short notes on the following :	7
		(i) Rectangular Coordinate System	
		(ii) Spherical Coordinate System	
	(b)	What are the methods of Image? Also	
		mention its limitations.	7
4.	(a)	Write short notes on the following :	7
		(i) Maxwell's Equations	
		(ii) Energy Stored in Magnetic Fields	
	(b)	Given that $\overline{J} = 10^4 (x^2 + y^2) \hat{a}_z A/m^2$,	
		determine the following :	7
		(i) The current density at $(-3, 4, 6)$.	
		(ii) The rate of increase in the volume	
		charge density at (1, - 2, 3).	
		(iii) The current crossing at disk of radius	
		5 mm placed on the xy-plane and	
		centered at the origin.	
BIEE-005		2	

5. (a) For a current distribution in free space,

$$\overline{\mathbf{A}} = (2\mathbf{x}^2\mathbf{y} + \mathbf{y}\mathbf{z})\mathbf{\hat{a}}_{\mathbf{x}} + (\mathbf{x}\mathbf{y}^2 - \mathbf{x}\mathbf{z}^3)\mathbf{\hat{a}}_{\mathbf{y}} - (6\mathbf{x}\mathbf{y}\mathbf{z} - 2\mathbf{x}^2\mathbf{y}^2)\mathbf{\hat{a}}_{\mathbf{z}} \text{ Wb/m}$$

- (i) calculate \overline{B} .
- (ii) show that

$$\nabla \cdot \mathbf{A} = 0 \text{ and } \nabla \cdot \mathbf{B} = 0.$$
 7

- (b) State and explain the Continuity Equation. What are the applications and limitations of this equation ?
- 6. (a) A plane wave in a non-magnetic medium has $\overline{E} = 50 \sin (10^8 t + 2z) \hat{a}_v V/m$. Find
 - (i) the direction of wave propagation

(ii)
$$\lambda$$
, f and ε_r

(iii) H

(b) A uniform plane wave in air with

$$\mathbf{E} = 8\cos\left(\omega \mathbf{t} - 4\mathbf{x} - 3\mathbf{z}\right)\hat{\mathbf{a}}_{\mathbf{v}}\mathbf{V}/\mathbf{m}$$

is incident on a dielectric slab (Z \ge 0), with $\mu_r = 1.0$, $\varepsilon_r = 2.5$, $\sigma = 0$. Find the

- (i) Polarization of the wave
- (ii) Angle of incidence
- (iii) Reflected E field
- (iv) Transmitted H field

BIEE-005

7

7

7

- 7. (a) Explain the following :
 - (i) Snell's Law of Refraction
 - (ii) Poynting Vector and its Applications
 - (b) A telephone line has $R = 30 \Omega/km$, L = 100 mH/km, G = 0 and C = 20 μ F/km. At f = 1 kHz, find
 - (i) the characteristic impedance of the line
 - (ii) the propagation constant
 - (iii) the group and phase velocity

7

7