B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination

December, 2017

BIEE-005 : ELECTROMAGNETIC THEORY

Time: 3 hours
Maximum Marks : 70

Note: Attempt any five questions. All questions carry equal marks. Use of scientific calculator is allowed.

1. (a) Given the potential $\overline{\mathrm{V}}=\frac{10}{\mathrm{r}^{2}} \sin \theta \cos \phi$,
(i) find the electric flux density ' D ' at ($2, \frac{\pi}{2}, 0$).
(ii) calculate the work done in moving a 10 nC charge from point $\mathrm{A}\left(1,30^{\circ}, 120^{\circ}\right)$ to $\mathrm{B}\left(4,90^{\circ}, 60^{\circ}\right)$.
(b) State and explain the Gauss Divergence Theorem. Also mention its limitations and utilities.
2. (a) Let $D=2 x y \hat{a}_{x}+x^{2} \hat{a}_{y} \quad C / m^{2}$, find the following :
(i) The volume charge density (ρ_{V})
(ii) The flux through surface

$$
0<\mathrm{x}<1,0<\mathrm{z}<1, \mathrm{y}=1
$$

(b) State and prove Stokes' Theorem. What are the limitations and utilities of this theorem?
3. (a) Write short notes on the following :
(i) Rectangular Coordinate System
(ii) Spherical Coordinate System
(b) What are the methods of Image ? Also mention its limitations.
4. (a) Write short notes on the following :
(i) Maxwell's Equations
(ii) Energy Stored in Magnetic Fields
(b) Given that $\overline{\mathrm{J}}=10^{4}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right) \hat{\mathrm{a}}_{\mathrm{z}} \mathrm{A} / \mathrm{m}^{2}$, determine the following :
(i) The current density at $(-3,4,6)$.
(ii) The rate of increase in the volume charge density at $(1,-2,3)$.
(iii) The current crossing at disk of radius 5 mm placed on the xy-plane and centered at the origin.
5. (a) For a current distribution in free space,

$$
\begin{aligned}
\overline{\mathrm{A}}=\left(2 x^{2} y+y z\right) \hat{a}_{x} & +\left(x y^{2}-x z^{3}\right) \hat{a}_{y} \\
& -\left(6 x y z-2 x^{2} y^{2}\right) \hat{a}_{z} W b / m
\end{aligned}
$$

(i) calculate $\overline{\mathrm{B}}$.
(ii) show that

$$
\begin{equation*}
\nabla \cdot \mathrm{A}=0 \text { and } \nabla \cdot \mathrm{B}=0 \tag{7}
\end{equation*}
$$

(b) State and explain the Continuity Equation. What are the applications and limitations of this equation?
6. (a) A plane wave in a non-magnetic medium has $\bar{E}=50 \sin \left(10^{8} t+2 z\right) \hat{a}_{y} V / m$. Find
(i) the direction of wave propagation
(ii) λ, f and ε_{r}
(iii) $\overline{\mathrm{H}}$
(b) A uniform plane wave in air with

$$
\bar{E}=8 \cos (\omega t-4 x-3 z) \hat{a}_{y} V / m
$$

is incident on a dielectric slab ($\mathrm{Z} \geq 0$), with $\mu_{r}=1 \cdot 0, \varepsilon_{r}=2 \cdot 5, \sigma=0$. Find the
(i) Polarization of the wave
(ii) Angle of incidence
(iii) Reflected $\overline{\mathbf{E}}$ field
(iv) Transmitted $\overline{\mathrm{H}}$ field
7. (a) Explain the following :
(i) Snell's Law of Refraction
(ii) Poynting Vector and its Applications
(b) A telephone line has $R=30 \Omega / \mathrm{km}$, $\mathrm{L}=100 \mathrm{mH} / \mathrm{km}, \mathrm{G}=0$ and $\mathrm{C}=20 \mu \mathrm{~F} / \mathrm{km}$.
At $\mathrm{f}=1 \mathrm{kHz}$, find 7
(i) the characteristic impedance of the line
(ii) the propagation constant
(iii) the group and phase velocity

