B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

December, 2017

BIEL-023 : INFORMATION THEORY AND CODING

Time : 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. Missing data, if any, may be suitably assumed. Use of scientific calculator is permitted. All questions carry equal marks.

1. Prove the following relation for non-negative numbers : $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$:

$$
\sum_{i=1}^{n} a_{i} \log _{10}\left(\frac{a_{i}}{b_{i}}\right) \geq \sum_{i=1}^{n} a_{i} \log _{10} \frac{\sum_{i=1}^{n} a_{i}}{\sum_{i=1}^{n} b_{i}}
$$

with equality iff $\left(a_{i} / b_{i}\right)$ is a constant.
2. Prove that for any given sequence of ($2^{\mathrm{nR}}, \mathrm{n}$) codes with $\lambda^{(n)} \rightarrow 0$ must have $R \leq C$, where the symbols have their usual meaning.
3. Prove that, if $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{n}}$ is a finite alphabet stochastic process which satisfies the Asymptotic Equipartition Property (AEP), then there exists a source channel code with $P_{e}^{(n)} \rightarrow 0$, if $H(V) \leq C$.
4. (a) What is the symbol-error correcting capability of a $(7,3)$ R-S code ? How many bits are there per symbol?
(b) Compute the number of rows and columns in the standard array to represent the (7, 3) R-S code. How much residual symbol error correcting capability does it have?
5. (a) Explain the concept of Lossless source
coding.
(b) Differentiate between joint, conditional and relative entropy.
6. What are Gaussian Channels ? Calculate the expression for mutual information and capacity for band-limited Gaussian channels.10
7. Explain the concept of error detection and correction codes as applicable to a Galois field.

BIEL-023
8. State and prove the Huffmann Coding technique. 10
9. Write short technical notes on any two of the following :
$2 \times 5=10$
(a) BCH Codes
(b) Cyclic Codes
(c) Linear Block Codes

