B．Tech．－VIEP－ELECTRONICS AND COMMUNICATION ENGINEERING （BTECVI）

Term－End Examination

December， 2017

BIEL－020 ：CONTROL ENGINEERING

Time： 3 hours
Maximum Marks ： 70
Note：Attempt any seven questions．All questions carry equal marks．Use of scientific calculator is permissible．Use of graph paper and semi－log sheet is allowed．

1．Determine the ratio C／R．

2. Obtain the transfer function C / R from the signal flow graph as shown below :

3. Consider the system as shown below. Determine the value of ' a ' such that the damping ratio is 0.5 . Also obtain the values of rise time and maximum overshoot M_{p} in its step response.

4. The forward path transfer function of a unity feedback control system is given by

$$
G(s)=\frac{5\left(s^{2}+2 s+100\right)}{s^{2}(s+5)\left(s^{2}+3 s+10\right)}
$$

Determine the step, ramp and parabolic error coefficients. Also determine the type of the system.
5. Sketch the polar plot for

$$
\begin{equation*}
G(s)=\frac{20}{s(s+1)(s+2)} . \tag{10}
\end{equation*}
$$

6. Define the following terms in reference to Bode plots for a given transfer function :10
(a) Phase Crossover Frequency
(b) Gain Crossover Frequency
(c) Phase Margin
(d) Gain Margin
7. A feedback system has an open loop transfer function

$$
G(s) H(s)=\frac{K c^{-s}}{s\left(s^{2}+5 s+9\right)}
$$

Determine by the use of Routh criterion, the maximum value of K for the closed loop system to be stable.
8. Explain all the rules required for the construction of Root Locii.
9. A system characterised by the transfer function

$$
\frac{Y(s)}{U(s)}=\frac{2}{s^{3}+6 s^{2}+11 s+6} .
$$

Find the state and output equation in matrix form and also test the controllability and observability of the system.

10. Explain what do you understand by

 Cascade-Lead compensation of a linear control system ? Give the transfer function of a typical lead compensator and explain its basic characteristics in reference to Bode plot. 10