B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

ロロ549

December, 2017

BIEL-007 : SIGNALS AND SYSTEMS

Time: 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks. Symbols used have their usual meanings.

1. (a) Distinguish between Power signal and Energy signal. Give an example of each.
(b) $x(t)$ is an energy signal with energy E over all time $(-\infty<\mathrm{t}<\infty)$. If this signal is scaled, both in magnitude and in time to become ax(bt), then what will be its energy?
(c) Determine whether the following signal is a power or energy signal or neither. If it is a power or energy signal, find the magnitude $x(t)=u(t)$.
2. (a) Determine the even and odd component of the following signal :

(b) Sketch the following signals :
(i) $x(t)=u(t) u(a-t)$
(ii) $\quad \mathrm{x}(\mathrm{t})=\mathrm{r}(\mathrm{t}+1)-\mathrm{r}(\mathrm{t})-\mathrm{u}(\mathrm{t}-2)$
(iii) $\mathrm{x}[\mathrm{n}]=\mathrm{u}[\mathrm{n}]-\mathrm{u}[\mathrm{n}-1]$
(iv) $\mathrm{x}[\mathrm{n}]=\mathrm{u}[\mathrm{n}] \mathrm{u}[3-\mathrm{n}]$
3. (a) Distinguish between Time Varying and Time Invariant systems. Give an example of each.

Check whether the following input-output relationship is time invariant or not :

$$
\begin{equation*}
y(t)=x(2 t) \tag{7}
\end{equation*}
$$

(b) Explain briefly, Memoryless System, with the help of an example.
4. What is meant by Impulse Response of a system? What is its importance ? The input to an LTI system is given by $x(t)=u(t)-u(t-4)$ and the impulse response of the system is $h(t)=2 e^{-a t} u(t)$. Find the output of the system $y(t)$. $3+7=10$
5. With relevant waveforms discuss the types of symmetry present in the periodic waveform. How does each type of symmetry help in simplifying the calculation?
6. (a) Starting from the expression of exponential Fourier series, derive the expression for Fourier transform of a signal. State the utility of Fourier transform.
(b) What will be the Fourier transform of a DC signal having unit strength ? Also draw its amplitude spectrum.

3
(c) Write the differential equation corresponding to the following transform equation :

$$
I(\omega)=\frac{5}{(j \omega+1)}-\frac{5}{(j \omega+2)}
$$

7. (a) If $x[n] \Leftrightarrow X\left(e^{j \omega}\right)$, then show that $x\left[n-n_{0}\right] \Leftrightarrow X\left(e^{j \omega}\right) e^{-j \omega n_{0}}$.
(b) Using the above relation determine the Fourier transform of the signal

$$
\begin{array}{cr}
y[n]=x[1-n]+x[-1-n] . & 5 \tag{5}\\
3 & \text { P.T.O. }
\end{array}
$$

8. (a) State the final value theorem for z-transform and derive the mathematical formulation of the theorem.
Hence find the final value of the signal corresponding to the following z-transformation :

$$
X(z)=\frac{1+z^{-1}}{1-0 \cdot 25 z^{-2}}
$$

(b) A unit step function (its z-transform is $\frac{z}{z-1}$) is sampled every T seconds. What would be the z-transform of a sampled step delayed by T second?
9. (a) Find the inverse z-transform of

$$
\begin{equation*}
X(z)=\frac{z}{z-0.5}|z|>0.5 \tag{5}
\end{equation*}
$$

(b) An LTI system is given by the difference equation

$$
y[n]+2 y[n-1]+y[n-2]=x[n] .
$$

Determine the unit impulse response.
10. Write short notes on the following :
(a) Singularity Functions and their Advantages
(b) Fourier Transform of Periodic Impulse Train

