B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

ロロ559 Term-End Examination

December, 2017

BIEL-006 : ELECTROMAGNETIC FIELD THEORY

Time: 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks. Symbols used have their usual meanings.

1. (a) Write down gradient of any scalar and divergence of any vector \bar{A} in different coordinate systems.
(b) Given the two vectors
$\bar{r}_{A}=-\bar{a}_{x}-3 \bar{a}_{y}-4 \bar{a}_{z}$ and
$\overline{\mathrm{r}}_{\mathrm{B}}=2 \overline{\mathrm{a}}_{\mathrm{x}}+2 \overline{\mathrm{a}}_{\mathrm{y}}+2 \overline{\mathrm{a}}_{\mathrm{z}}$ and a point
(1, 3, 4). Find (i) $\bar{r}_{A B}$, (ii) $\bar{a}_{A B}$, and
(iii) a unit vector directed from C toward A.
2. (a) Prove the following identity :

$$
\nabla \times \nabla \times \overline{\mathbf{A}}=\nabla(\nabla \cdot \overline{\mathbf{A}})-\nabla^{2} \mathbf{A}
$$

(b) Transform each of the following vectors to cylindrical coordinates at the point specified :

4
(i) $5 \overline{\mathrm{a}}_{\mathrm{x}}$ at $\mathrm{P}\left(\rho=4, \phi=120^{\circ}, \mathrm{z}=-1\right)$
(ii) $5 \overline{\mathrm{a}}_{\mathrm{x}}$ at $\mathrm{Q}(\mathrm{x}=3, \mathrm{y}=4, \mathrm{z}=-1)$
3. (a) Define the term Electric Field Intensity. State its unit.
(b) An infinite uniform line charge $\lambda_{\mathrm{L}}=2 \mathrm{nC} / \mathrm{m}$, lies along the x -axis in free space, while point charges of 8 nC are located at $(0,0,1)$ and $(0,0,-1)$. Find \bar{E} at $(2,3,-4)$. To what value should λ_{L} be changed to cause $\overline{\mathrm{E}}$ to be zero at $(0,0,3)$?
5. (a) State Ampere's circuital law. Express it in integral form.
(b) The radius of the inner solid conductor of a coaxial transmission line $a=5 \mathrm{~mm}$. The internal and external radii of the outer conductor are $b=7 \mathrm{~mm}$ and $c=8.6 \mathrm{~mm}$ respectively. The transmission line supplies 120 kW at 1500 V. Find the magnitude of magnetic field intensity at (i) $r=3 \mathrm{~mm}$, and (ii) $r=6 \mathrm{~mm}$.
6. (a) Write Maxwell's equation for harmonic fields in differential form. Give the physical meanings of each equation.
(b) Calculate the ratio of conduction current density to displacement current density in a good conductor for which the conductivity is $3.8 \times 10^{7} \mathrm{~S} / \mathrm{m}$ and relative permittivity is 1.0 . The frequency of field intensity that varies harmonically with time is $10^{9} \mathrm{~Hz}$.
7. State Poynting's theorem starting from Maxwell's equations. Derive the relation expressing the theorem. Hence define Poynting vector and state its unit and also its importance. $6+4$
8. (a) What is a Plane Wave ? Derive the general expression of a uniform plane wave and comment on its direction of propagation.
(b) Consider that a plane wave at $1.5 \times 10^{6} \mathrm{~Hz}$ is travelling along positive z -direction in a good conductor for which $\sigma=3.8 \times 10^{7} \mathrm{~S} / \mathrm{m}$, $\mu=\mu_{0}$. Calculate the attenuation constant, phase constant, propagation constant and skin depth.
9. (a) Derive the expressions of the reflection and transmission coefficients. Derive the relationship between the two. Explain what is the basis of that relationship.
(b) The characteristic impedance of an ideal two-conductor transmission line is 75Ω. It is transmitted with a load of resistance 150Ω and inductive reactance of 20Ω. Find the voltage reflection and voltage transmission coefficients at the load terminals.
10. Write short notes on any two of the following : $2 \times 5=10$
(a) Scalar Magnetic Potential and Vector Magnetic Potential
(b) Impedance Matching by the Use of Quarter-wave Line
(c) Characteristics of TE and TM Waves

