BIEL-006

B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

00659 Term-End Examination

December, 2017

BIEL-006 : ELECTROMAGNETIC FIELD THEORY

Time : 3 hours

Maximum Marks: 70

- Note: Attempt any seven questions. All questions carry equal marks. Symbols used have their usual meanings.
- 1. (a) Write down gradient of any scalar and divergence of any vector \overline{A} in different coordinate systems.
- (b) Given the two vectors $\vec{r}_A = -\vec{a}_x - 3\vec{a}_y - 4\vec{a}_z$ and $\vec{r}_B = 2\vec{a}_x + 2\vec{a}_y + 2\vec{a}_z$ and a point (1, 3, 4). Find (i) \vec{r}_{AB} , (ii) \vec{a}_{AB} , and (iii) a unit vector directed from C toward A. 5 BIEL-006 1 P.T.O.

- 2. (a) Prove the following identity : $\nabla \times \nabla \times \overline{A} = \nabla (\nabla \cdot \overline{A}) - \nabla^2 A$
 - (b) Transform each of the following vectors to cylindrical coordinates at the point specified :
 - (i) 5 \bar{a}_x at P ($\rho = 4, \phi = 120^\circ, z = -1$)

(ii)
$$5 \overline{a}_{x} \text{ at } Q (x = 3, y = 4, z = -1)$$

- **3.** (a) Define the term Electric Field Intensity. State its unit.
 - (b) An infinite uniform line charge $\lambda_{\rm L} = 2n$ C/m, lies along the x-axis in free space, while point charges of 8 nC are located at (0, 0, 1) and (0, 0, -1). Find $\overline{\rm E}$ at (2, 3, -4). To what value should $\lambda_{\rm L}$ be changed to cause $\overline{\rm E}$ to be zero at (0, 0, 3)?
 - 4. Derive the expression for the capacitance of a spherical capacitor formed of two concentric spherical conducting shells of radius r and R, R > r, by using
 - (a) Gauss law,
 - (b) Laplace's equation.

What will be the capacitance of an isolated spherical conductor of radius r? 8+2

7

4

- 5. (a) State Ampere's circuital law. Express it in integral form.
 - (b) The radius of the inner solid conductor of a coaxial transmission line a = 5 mm. The internal and external radii of the outer conductor are b = 7 mm and c = 8.6 mm respectively. The transmission line supplies 120 kW at 1500 V. Find the magnitude of magnetic field intensity at (i) r = 3 mm, and (ii) r = 6 mm.
- 6. (a) Write Maxwell's equation for harmonic fields in differential form. Give the physical meanings of each equation.
 - (b) Calculate the ratio of conduction current density to displacement current density in a good conductor for which the conductivity is 3.8×10^7 S/m and relative permittivity is 1.0. The frequency of field intensity that varies harmonically with time is 10^9 Hz.
- 7. State Poynting's theorem starting from Maxwell's equations. Derive the relation expressing the theorem. Hence define Poynting vector and state its unit and also its importance. 6+4
- 8. (a) What is a Plane Wave ? Derive the general expression of a uniform plane wave and comment on its direction of propagation.

3

BIEL-006

P.T.O.

6

4

6

6

- (b) Consider that a plane wave at 1.5×10^6 Hz is travelling along positive z-direction in a good conductor for which $\sigma = 3.8 \times 10^7$ S/m, $\mu = \mu_0$. Calculate the attenuation constant, phase constant, propagation constant and skin depth.
- 9. (a) Derive the expressions of the reflection and transmission coefficients. Derive the relationship between the two. Explain what is the basis of that relationship.
 - (b) The characteristic impedance of an ideal two-conductor transmission line is 75 Ω. It is transmitted with a load of resistance 150 Ω and inductive reactance of 20 Ω. Find the voltage reflection and voltage transmission coefficients at the load terminals.
- 10. Write short notes on any *two* of the following : $2 \times 5 = 10$
 - (a) Scalar Magnetic Potential and Vector Magnetic Potential
 - (b) Impedance Matching by the Use of Quarter-wave Line
 - (c) Characteristics of TE and TM Waves

4

6