B.Tech. - VIEP - ELECTRONICS AND COMIMUNICATION ENGINEERING (BTECVI)

00519

Term-End Examination
December, 2017

BIEL-003 : DIGITAL ELECTRONICS

Time : 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. Assume any missing data suitably. Use of scientific calculator is allowed.

1. (a) For a given number (4246), obtain its equivalent excess-3 code and gray code.
(b) Simplify the given Boolean expression using Boolean Algebra

$$
\begin{equation*}
F(x, y, 3)=\pi_{m}(3,5,7) \tag{5}
\end{equation*}
$$

2. (a) Design and implement a half subtractor using universal gates.
(b) Differentiate between decoder and $\begin{aligned} & \\ & \text { demultiplexer. }\end{aligned}$
3. (a) Explain SR flip-flop using truth table. Also write its drawbacks.
(b) Design a Mod-5 ripple up counter. 5
4. (a) Reduce the following function using K-map technique:

5
$\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\pi(0,3,4,7,8,10,12,14)+\mathrm{d}(2,6)$
(b) Derive T flip-flop using JK flip-flop.

5
5. (a) Compare and contrast the features of TTL and CMOS logic families. 5
(b) Explain the following terms : 5
(i) Fan-in
(ii) Tristate gates
6. (a) Write short notes on PROM and EPROM. 5
(b) Explain the principle of operation of bipolar SRAM cell.

$$
5
$$

7. (a) Give the classification of semiconductor memories.
(b) Implement the function with a MUX :

5

$$
F(A, B, C, D)=\Sigma(0,1,3,4,8,9,15)
$$

8. Using K-map method obtain the minimal SOP and POS expressions for the function

$$
\begin{equation*}
F(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w})=\Sigma(1,3,4,5,6,7,9,12,13) \tag{10}
\end{equation*}
$$

BIEL-003
9. (a) Draw a circuit of 2×1 MUX and
1×2 De-MUX. 5
(b) Write notes on the following: 5
(i) PLA(ii) Flash Memory
10. Draw a six-stage ring counter and explain its operation. 10

