No. of Printed Pages: 4

**BIEL-002** 

## B.Tech. – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

## **Term-End Examination**

December, 2017

BIEL-002 : ANALOG AND INTEGRATED CIRCUITS DESIGN

Time : 3 hours

00559

Maximum Marks : 70

Note: Attempt any seven questions. All questions carry equal marks. Missing data may be suitably assumed and mentioned. Use of scientific calculator is permitted.

| <b>1.</b> (a) | Write the characteristics of an ideal op-amp.                                                         | 5            |
|---------------|-------------------------------------------------------------------------------------------------------|--------------|
| (b)           | Why are differential amplifiers preferred over single-ended amplifiers ? Explain.                     | 5            |
| <b>2.</b> (a) | Derive the expressions of closed loop gain<br>in both, inverting and non-inverting<br>configurations. | 5            |
| (b)           | Discuss the various Grounding and Shielding techniques.                                               | 5            |
| BIEL-002      | 1 P.T                                                                                                 | . <b>O</b> . |

3. (a) Assuming the op-amp to be ideal, derive an expression for the closed-loop gain  $v_0/v_1$  of

the circuit as shown below.



Use this circuit to design an inverting amplifier with a gain of 100 and an input resistance of  $1 M\Omega$ . Assume that for practical reasons it is required not to use resistors greater than  $1 M\Omega$ .

- (b) Draw the voltage follower circuit using op-amp, and show that the gain is unity. Draw its equivalent circuit model.
- 4. (a) Draw the circuit diagram of the instrumentation amplifier using op-amp, and explain its operation principle by deriving the expression of gain.
  - (b) Design a circuit using op-amp to get the output voltage  $v_0 = 6v_1 + 4v_2$ .

**BIEL-002** 

5

5

5

5

5. (a) For the circuit as shown below, find the values of  $i_1$ ,  $i_I$ ,  $v_1$ ,  $i_2$ ,  $v_0$ ,  $i_L$  and  $i_0$ . Also find the voltage gain  $v_0/v_I$ , the current gain  $i_L/i_I$  and the power gain  $P_L/P_I$ .



- (b) Define Common Mode Rejection Ratio of op-amp.
- 6. (a) Design a differentiator circuit using op-amp. Also derive its transfer function.
  - (b) Explain the practical considerations of a differentiator circuit and its limitations.
- 7. (a) Design a Sample and Hold Circuit using op-amp. Explain its operation principle.
  - (b) Design a Clipper Circuit and Clamper Circuit using op-amp.

3

**BIEL-002** 

P.T.O.

2

5

5

5

5

| 8.  | (a)             | Design a circuit for generation of sawtooth waves using op-amp.                                                                            | 5  |
|-----|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------|----|
|     | (b)             | Design an op-amp based multivibrator<br>circuit and explain its operation.                                                                 | 5  |
| 9.  | (a)             | What is the difference between Difference<br>Amplifier and Comparator Circuit ? What<br>are the limitations of op-amp as a<br>comparator ? | 5  |
|     | (b)             | Classify the types of Filters. Draw the circuit diagram of a $2^{nd}$ order Sallen-key low pass filter.                                    | 5  |
| 10. | Write<br>follow | e short notes on any $two$ of the ving: $2 \times 5 = 2$                                                                                   | 10 |
|     | (a)             | Log/Antilog Amplifier                                                                                                                      |    |

- (b) Voltage Controlled Oscillator (VCO)
- (c) Phase Locked Loop (PLL) as FM Demodulator

1,000