No. of Printed Pages: 4

BICS-018

B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination December, 2017

BICS-018 : THEORY OF COMPUTATION

Time : 3 hours

00014

Maximum Marks : 70

Note : Attempt any **seven** questions. All questions carry equal marks.

1.	(a)	Discuss the equivalence among DFA, NFA						
		and	NFA	with	ε moves.	Give	suitable	
		examples for each.						

(b) Construct a DFA for equivalent Regular Expression R :

 $R = (01 + 2^*)^* 1$

2. (a) Describe the term Deterministic PDA. Show that $\{a^{n}b^{n} | n > 1\} \cup \{a^{m}b^{2m} | m > 1\}$ cannot be accepted by deterministic PDA. 5

(b) Construct a PDA equivalent to the Context-Free Grammar (CFG) $S \rightarrow 0BB, B \rightarrow 0S, B \rightarrow 1S, B \rightarrow 0$

and test whether 010 satisfies the PDA.

BICS-018

5

6

4

- 3. (a) Explain Pumping Lemma for Context-Free Language (CFL) and prove that the language $L = \{0^k | k \text{ is a perfect square}\}$ is not a CFL.
 - (b) Differentiate between Turing Machine (TM) and Pushdown Automata (PDA).
 Design a TM to recognize all strings consisting of even number of 1's.
- 4. (a) How does a Moore machine differ from a Mealy machine ? Design a Moore and Mealy machine to convert each occurrence of substring 100 with 101.
 - (b) What is Chomsky Normal Form ? Convert the following grammar to Chomsky normal form :

 $S \rightarrow AaB \mid aaB; A \rightarrow \varepsilon; B \rightarrow bbA \mid \varepsilon$

- 5. (a) What is Context-Free Grammar (CFG) ? Construct a reduced grammar equivalent to the grammar $S \rightarrow aAa; A \rightarrow Sb \mid bCC \mid DaA$ $C \rightarrow abb \mid DD; E \rightarrow aC; D \rightarrow aDA$
 - (b) Differentiate between recursive and recursive enumerable languages. Verify that the union of two recursively enumerable languages is recursively enumerable.

BICS-018

5

5

5

5

5

6. (a)	State the Vertex Cover problem with the help of suitable example.	5				
(b)	Discuss the Travelling Salesperson problem with the help of suitable example.					
7. (a)	Differentiate between Deterministic and Non-deterministic Pushdown Automata. Explain the relation between Pushdown Automata and Context-Free Grammars.	5				
(b)	State and explain Rice's Theorem with the help of suitable example.	5				
8. (a)	 Compare and contrast the following : (i) Decidability and Undecidability (ii) Context Sensitive Grammar and 	5				
(b)	Discuss Myhill-Nerode theorem with its applications.	5				
9. (a)	What is Finite Automata (FA) ? Construct a Non-Deterministic Finite Automata (NDFA) accepting {ab, ba} and use it to construct a deterministic automation, accepting the same set.	5				
(b)	When is a Grammar said to be					
	(i) Ambiguous ?					
	(ii) Reduced ?	5				
BICS-01	18 3 P.T	0.				

10. Write short notes on the following :

5×2=10

L

- (a) Modifications of Turing Machine
- (b) Chromatic Number Problem
- (c) Significance of NFA with \wedge -transitions
- (d) Church's Hypothesis
- (e) NP-Complete Problem