B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination
ロロ5ร9
December, 2017

BICS-014 : DESIGN AND ANALYSIS OF ALGORITHM

Time: 3 hours

Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks.

1. (a) What is a RAM model ? Explain asymptotic notations in brief.
(b) What is Amortized Analysis ? Explain the different methods of amortized analysis.
2. What is the difference between Heap and Tree? Write the algorithm of heap sort. Illustrate the operations of heap sort in the following array of data:

$$
A=<5,13,2,25,7,17,20,8,4>
$$

3. Briefly discuss the following types of problems, i.e., P, NP, Co-NP, NP-Hard and NP-Complete. Prove that the vertex cover problem is NP-complete.
4. What is Dynamic programming ? How does dynamic programming differ from the Greedy approach? Explain the characteristics of dynamic programming with examples.
5. What is a Minimum Cost Spanning Tree ? Write Prim's algorithm. Generate a minimum cost spanning tree for the following graph using Prim's algorithm :

6. Explain the Travelling Salesman Problem, with
suitable example.
10
7. Explain the dynamic programming solution for matrix chain multiplication. 10
8. (a) Find the minimum number of operations required for the following chain matrix multiplication using dynamic programming :

$$
\mathrm{A}(30 \times 40) \times \mathrm{B}(40 \times 5) \times \mathrm{C}(5 \times 15) \times \mathrm{D}(15 \times 6)
$$

(b) How does Binary tree differ from Binary search tree ? Write an algorithm to generate a binary search tree.
9. (a) Solve the following $0 / 1$ knapsack problem using dynamic programming :

$$
\begin{aligned}
& \mathrm{m}=6, \mathrm{n}=3 ;\left(\mathrm{w}_{1}, \mathrm{w}_{2}, \mathrm{w}_{3}\right)=(2,3,3) ; \\
& \left(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}\right)=(1,2,4)
\end{aligned}
$$

(b) Differentiate between Dynamic Knapsack and Branch-and-Bound Knapsack algorithms.
10. Write short notes on any two of the following :
(a) Greedy Algorithm
(b) Randomized Algorithm
(c) Approximate Algorithm

