No. of Printed Pages: 4

BICS-010

B.Tech. – VIEP – COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination

December, 2017

BICS-010 : FORMAL LANGUAGES AND AUTOMATA

Time : 3 hours

00347

Maximum Marks: 70

- **Note :** Attempt any **seven** questions. All questions carry equal marks.
- (a) Design a DFA to accept the language L = {w | w has 3k + 1 b's for some k ∈ N} over alphabets Σ = {a, b} (where N is a natural number).
 - (b) Prove L = {w ∈ (0, 1)* | w contains the same number of 0's and 1's} is non-regular using pumping lemma.

BICS-010

P.T.O.

5

5

2. Construct a minimum state automaton equivalent to the following diagram : 10

3. Frove that the following language is **not** a CFL by pumping lemma :

10

 $L = \{a^n \ a^{n+1} \ c^{n+2} \ | \ n \ge 0\}$

4. Write the definition of Moore Machine and convert the following Mealy Machine into equivalent Moore Machine : 10

Present State	Next State			
	a = 0		a = 1	
	Next state	Output	Next state	Qutput
\rightarrow a	d	0	b	1
b	а	1	d	0
С	С	1	с	0
d	b	0	а	1

BICS-010

5. Define Turing Machine. Design a Turing Machine that accepts the following language : 10

 $L = \{a^{n+1} b^n | n > 0\}$

6. (a) For the given state diagram of a NFA, find the equivalent DFA.

5

5

(b) Construct a DFA from the given NFA with ε moves.

- 7. Convert the following context-free grammar to Greibach Normal Form (GNF): 10
 - $S \rightarrow AB | BC$ $A \rightarrow AB | a$ $B \rightarrow AA | CB | b$ $C \rightarrow a | b$
- 8. Let f_1 and f_2 be two natural functions which are computed by TM M_1 and M_2 respectively. Construct a TM that computes max (f_1, f_2) . 10 BICS-010 3 P.T.O.

9. Define DPDA. Design a PDA for recognizing

 $L = \{a^{m} \ b^{n} \ c^{o} \ d^{p} \ | \ m, \ n, \ o, \ p \ge 1 \ and \\ m+n=o+p\}.$ 10

10. Write short notes on any *two* of the following : $2 \times 5 = 10$

- (a) Variants of Turing Machine
- (b) Post Correspondence Problem
- (c) Chomsky Hierarchy
- (d) Recursive and Recursively Enumerable Languages