B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

ロロ347
 Term-End Examination

December, 2017

BICS-010 : FORMAL LANGUAGES AND AUTOMATA

Time : 3 hours
Maximum Marks : 70

Note: Attempt any seven questions. All questions carry equal marks.

1. (a) Design a DFA to accept the language $L=\{\mathbf{w} \mid w$ has $3 k+1$ b's for some $k \in N\}$ over alphabets $\Sigma=\{a, b\}$ (where N is a natural number). 5
(b) Prove $L=\left\{w \in(0,1)^{*} \mid w\right.$ contains the same number of 0 's and 1 's) is non-regular using pumping lemma. 5
2. Construct a minimum state automaton equivalent to the following diagram :

3. Prove that the following language is not a CFL by pumping lemma :

$$
\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{a}^{\mathrm{n}+1} \mathrm{c}^{\mathrm{n}+2} \mid \mathrm{n} \geq 0\right\}
$$

4. Write the definition of Moore Machine and convert the following Mealy Machine into equivalent Moore Machine :

Present State	Next State			
	$\mathrm{a}=0$		$\mathrm{a}=1$	
	Next state	Output	Next state	Output
$\rightarrow \mathrm{a}$	d	0	b	1
b	a	1	d	0
c	c	1	c	0
d	b	0	a	1

5. Define Turing Machine. Design a Turing Machine that accepts the following language :

$$
L=\left\{a^{n+1} b^{n} \mid n>0\right\}
$$

6. (a) For the given state diagram of a NFA, find the equivalent DFA.

$$
5
$$

(b) Construct a DFA from the given NFA with ε moves.

7. Convert the following context-free grammar to Greibach Normal Form (GNF) :

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{AB} \mid \mathrm{BC} \\
& \mathrm{~A} \rightarrow \mathrm{AB} \mid \mathrm{a} \\
& \mathrm{~B} \rightarrow \mathrm{AA}|\mathrm{CB}| \mathrm{b} \\
& \mathrm{C} \rightarrow \mathrm{a} \mid \mathrm{b}
\end{aligned}
$$

8. Let f_{1} and f_{2} be two natural functions which are computed by TM M_{1} and M_{2} respectively. Construct a TM that computes $\max \left(\mathrm{f}_{1}, \mathrm{f}_{2}\right)$. 10
9. Define DPDA. Design a PDA for recognizing

$$
\begin{aligned}
& \mathrm{L}=\left\{\mathrm{a}^{\mathrm{m}} \mathrm{~b}^{\mathrm{n}} \mathrm{c}^{0} \mathrm{~d}^{\mathrm{p}} \mid \mathrm{m}, \mathrm{n}, \mathrm{o}, \mathrm{p} \geq 1\right. \text { and } \\
& \mathrm{m}+\mathrm{n}=\mathrm{o}+\mathrm{p}\} .
\end{aligned}
$$

10. Write short notes on any two of the following : $2 \times 5=10$
(a) Variants of Turing Machine
(b) Post Correspondence Problem
(c) Chomsky Hierarchy
(d) Recursive and Recursively Enumerable Languages
