No. of Printed Pages : 3

BICS-009

B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

00527	Term-End	Examination
-------	----------	-------------

December, 2017

BICS-009 : LOGIC DESIGN

Time : 3 hours		ours Maximum Marks :	Maximum Marks : 70	
Note : Attempt any seven questions. All questions carry equal marks.				
1.	(a)	Design a 2 input XOR gate of using number		
		of NAND gates.	5	
	(b)	Explain Positive logic and Negative logic.	5	
2.	(a)	State and prove De Morgan's theorems.	5	
	(b)	Obtain the canonical sum of product form of	•	
		the following :	5	
		(i) $f = \overline{ABC} + \overline{BC} (A + D)$		
		(ii) $\mathbf{f} = \mathbf{A}(\mathbf{C} + \mathbf{\overline{D}}) + \mathbf{B}\mathbf{\overline{C}}$		
3. (a)	(a)	What is a Decoder ? Draw neat diagrams		
		for it.	5	
	(b)	Write a short note on seven segment decoder.	5	
BIC	S-009	1 P.T.	. O .	

4.	(a) (b)	What is Even parity or Odd parity ? Explain parity checker and parity generation with the help of an example. With a neat sketch, explain Diode ROM.	5 5
5.	(a) (b)	Add the following 8-bit numbers : 0101 0111 and 0011 0101, then show the same number in hexadecimal notation. Show the binary subtraction of 125_{10} from 200_{10} .	3 4
	(c)	Express 19750 in 2's complement representation.	3
6.	(a)	What is JK Flip-Flop ? Show in diagrams and write the truth table.	5
	(b)	How does the Schmitt trigger inverter work ? Explain.	5
7.	(a)	What are the types of Registers ? Explain with the help of neat diagrams.	5
	(b)	How does the 4-bit serial input shift register work ? Explain with the help of neat diagram.	5
8.	(a)	Show a method for constructing a $5 \times 2 \mod 10$ decode counter.	5
	(b)	What is a Digital Clock ? Explain with the help of neat diagram.	5

BICS-009

2

P.T.O.

- 9. (a) Find the output voltage from a 5-bit ladder that has a digital input of 11010. Assume that 0 = 0 V and 1 = + 10 V.
 - (b) Find the binary equivalent weight of each bit
 in a 4-bit system in variable register network. 5
- 10. What is a successive approximation converter ?Explain with the help of diagrams.10

5