No. of Printed Pages: 4

BICS-008

B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination

00567 December, 2017

BICS-008 : DISCRETE MATHS STRUCTURE

Time : 3 hours

Maximum Marks: 70

Note: Answer any seven questions. All questions carry equal marks.

1. (a)	Express the formula $P \rightarrow Q$ in terms of $\{\uparrow\}$	
	only.	2
(b)	Show the following equivalence :	4
	$(\mathbf{A} \land (\mathbf{\sim} \mathbf{A} \lor \mathbf{B})) \lor (\mathbf{B} \land \mathbf{\sim} (\mathbf{A} \land \mathbf{B})) \Leftrightarrow \mathbf{B}$	
(c)	Which of the following formulae is not a tautology? (i) $(P \rightarrow Q) \rightarrow (Q \rightarrow R)$ (ii) $(P \rightarrow Q) \land (Q \rightarrow P)$	4
2. (a)	Show that $(\mathbf{x}) (\mathbf{P}(\mathbf{x}) \lor (\mathbf{Q}(\mathbf{x})) \rightarrow (\mathbf{x}) \mathbf{P}(\mathbf{x}) \lor (\mathbf{z} \mathbf{x}) \mathbf{Q}(\mathbf{x})$	5
(b)	Using proof by contradiction, show that the following premises are inconsistent : $A \rightarrow (B \lor C), B \rightarrow \sim A, D \rightarrow \sim C,$ $A \Rightarrow A \rightarrow \sim D$	·5
BICS-008	1 P.T	.0.

3. (a) Find the inverse of the following functions : 5

(i)
$$f(x) = x^4 + 1$$

(ii)
$$f(x) = \frac{10}{\sqrt[5]{7-3x}}$$

(b) What do you mean by primitive recursive function ? Prove that f(x, y) = x * y is a primitive recursive function.

- 4. Consider the algebraic system, (z, *), where * is defined by a * b = a + b ab. State whether (z, *) is a group or monoid.
- 5. A binary composition * in R is defined by $a * b = a \cdot b^2$ for all $a, b \in \mathbb{R}$. Determine whether * is associative or not. 10
- 6. Solve the following recurrence relations :

(a)
$$a_n - 5a_{n-1} + 8a_{n-2} - 4a_{n-3} = n2^n$$
 5

(b)
$$a_n + 6a_{n-1} + 12a_{n-2} + 8a_{n-3} = 3^n$$
 5

7. (a) What is a spanning tree ? What is minimum cost spanning tree ? What are the different algorithms to compute minimum cost spanning tree ? Explain with suitable examples.

5

5

8. (a) What is chromatic number ? What is the chromatic number of the following ? 5

- (i) Tree
- (ii) C_n
- (iii) K_{m, n}
- (iv) W_n
- (b) Show whether the following graphs are isomorphic or not :

9. (a) Give the adjacency matrix of the graph
G = ({a, b, c, d}, R), where R = {(a, b), (b, c),
(d, c), (d, a)}. 5

(b) Define and explain Equivalence relation. 5

3

BICS-008

5

- 10. (a) State the binomial theorem.
 - (b) Show that the number of r-permutations of a set of n (distinct) elements is given by

$$\mathbf{P}(\mathbf{n},\mathbf{r}) = \frac{\mathbf{n}!}{(\mathbf{n}-\mathbf{r})!}.$$
 5

BICS-008