B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination
ロロ5E?
December, 2017

BICS-008 : DISCRETE MATHS STRUCTURE

Time: 3 hours
Maximum Marks : 70
Note: Answer any seven questions. All questions carry equal marks.

1. (a) Express the formula $P \rightarrow Q$ in terms of $\{\uparrow\}$ only.
(b) Show the following equivalence:
$(A \wedge(\sim A \vee B)) \vee(B \wedge \sim(A \wedge B)) \Leftrightarrow B$
(c) Which of the following formulae is not a tautology?
(i) $(P \rightarrow Q) \rightarrow(Q \rightarrow R)$
(ii) $(\mathbf{P} \rightarrow \mathbf{Q}) \wedge(\mathbf{Q} \rightarrow \mathbf{P})$
2. (a) Show that

$$
(\mathbf{x})(P(x) \vee Q(x)) \rightarrow(x) P(x) \vee(\exists x) Q(x)
$$

(b) Using proof by contradiction, show that the following premises are inconsistent :

$$
\begin{aligned}
& A \rightarrow(\mathbf{B} \vee C), B \rightarrow \sim A, D \rightarrow \sim C, \\
& A \Rightarrow A \rightarrow \sim D
\end{aligned}
$$

BICS-008 1 P.T.O.
3. (a) Find the inverse of the following functions:
(i) $f(x)=x^{4}+1$
(ii) $f(x)=\frac{10}{\sqrt[5]{7-3 x}}$
(b) What do you mean by primitive recursive function ? Prove that $f(x, y)=x * y$ is a primitive recursive function.
4. Consider the algebraic system, $(\mathrm{z}, *)$, where $*$ is defined by $a * b=a+b-a b$. State whether $(z, *)$
is a group or monoid.10
5. A binary composition $*$ in \mathbf{R} is defined by $a * b=a \cdot b^{2}$ for all $a, b \in R$. Determine whether * is associative or not.
6. Solve the following recurrence relations:
(a) $a_{n}-5 a_{n-1}+8 a_{n-2}-4 a_{n-3}=n 2^{n}$
(b) $a_{n}+6 a_{n-1}+12 a_{n-2}+8 a_{n-3}=3^{n}$
7. (a) What is a spanning tree ? What is minimum cost spanning tree ? What are the different algorithms to compute minimum cost spanning tree ? Explain with suitable examples.
(b) Draw dual of the following graph :

8. (a) What is chromatic number ? What is the chromatic number of the following?
(i) Tree
(ii) C_{n}
(iii) $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$
(iv) W_{n}
(b) Show whether the following graphs are isomorphic or not :

9. (a) Give the adjacency matrix of the graph $G=(\{a, b, c, d\}, R)$, where $R=\{(a, b),(b, c)$, (d, c), (d, a) \}.
(b) Define and explain Equivalence relation.
10. (a) State the binomial theorem.
(b) Show that the number of r-permutations of a set of n (distinct) elements is given by $P(n, r)=\frac{n!}{(n-r)!}$.

