No. of Printed Pages: 3

ET-533(B)

B.Tech. Civil (Water Resources Engineering)

Term-End Examination

December, 2017

75800

ET-533(B): OPEN CHANNEL FLOW

Time: 3 hours

Maximum Marks: 70

Note: Attempt any five questions. All questions carry equal marks. Use of non-programmable scientific calculator is allowed.

- 1. (a) A straight wide river has a constant depth of flow of 1 m at all its sections. A flood wave enters the river increasing the depth to 6 m at upstream, and to 5 m at downstream locations. Classify this type of flow.
 - (b) A rectangular channel has a bottom width of 8.0 m and n = 0.015.
 - (i) For $y_n = 1.0$ m and Q = 15 m³/s, find the normal slope.
 - (ii) Find the normal depth of flow for $Q = 15 \text{ m}^3/\text{s}$.
- 2. (a) Explain the specific energy curve with the help of a neat diagram. Write the specific energy equation and derive the Froude number.

8

7

7

(b)	Water flows in a rectangular channel 2.5 m wide at a velocity of 2.8 m/s and a depth of 2.2 m. There is an upward step of 0.72 m in the channel bed. What expansion in width must take place simultaneously for this flow to be possible as specified?	6
(a)	Derive an expression for energy loss due to formation of hydraulic jump.	7
(b)	A hydraulic jump occurs in a rectangular channel and depths of flow before and after the jump are 0.5 m and 2.0 m respectively. Calculate the critical depth and the power lost per unit width of the channel.	7
(a)	Derive an expression for a gradually varied flow equation with a neat diagram.	10
(b)	A rectangular channel 4.5 m wide having a bed slope of 0.00009 carries water at a depth of 1.4 m. If the channel terminates in an abrupt drop in the bed, what type of flow profile, upstream of the drop, is expected to form? Assume $n = 0.016$.	4
Explain gradually varied flow profiles under practical conditions in detail.		14
(a)	Explain all three metering flumes for flow measurement in brief.	7

3.

4.

5.

6.

(b) A rectangular channel 3 m wide carries a discharge of 1.85 cumecs with a depth of flow 0.50 m. It is to cross a natural drainage and, for this purpose, find out the maximum allowable contraction in the width without increasing the depth of flow in the channel.

7

7. (a) List the assumptions and derive the dynamic equation of uniformly progressive flow.

7

(b) What is the deep-water wavelength and the corresponding phase velocity if a waveform has a period of 7 seconds? What will be its wavelength if the depth of water is 30 m?

7

- 8. Write short notes on any **four** of the following: $4 \times 3\frac{1}{2} = 14$
 - (a) Choking Condition
 - (b) Specific Force and Sequent Depth
 - (c) Hydraulic Bore
 - (d) Specific Force
 - (e) H-Profile