B.Tech. Civil (Water Resources Engineering)

Term-End Examination

December, 2017
Dapr?

ET-533(B) : OPEN CHANNEL FLOW

Time: 3 hours
Maximum Marks : 70
Note: Attempt any five questions. All questions carry equal marks. Use of non-programmable scientific calculator is allowed.

1. (a) A straight wide river has a constant depth of flow of 1 m at all its sections. A flood wave enters the river increasing the depth to 6 m at upstream, and to 5 m at downstream locations. Classify this type of flow.
(b) A rectangular channel has a bottom width of 8.0 m and $\mathrm{n}=0.015$.
(i) For $y_{n}=1.0 \mathrm{~m}$ and $\mathrm{Q}=15 \mathrm{~m}^{3} / \mathrm{s}$, find the normal slope.
(ii) Find the normal depth of flow for $Q=15 \mathrm{~m}^{3} / \mathrm{s}$.
2. (a) Explain the specific energy curve with the help of a neat diagram. Write the specific energy equation and derive the Froude number.
(b) Water flows in a rectangular channel 2.5 m wide at a velocity of $2.8 \mathrm{~m} / \mathrm{s}$ and a depth of 2.2 m . There is an upward step of 0.72 m in the channel bed. What expansion in width must take place simultaneously for this flow to be possible as specified?
3. (a) Derive an expression for energy loss due to formation of hydraulic jump.
(b) A hydraulic jump occurs in a rectangular channel and depths of flow before and after the jump are 0.5 m and 2.0 m respectively. Calculate the critical depth and the power lost per unit width of the channel. 7
4. (a) Derive an expression for a gradually varied flow equation with a neat diagram.
(b) A rectangular channel 4.5 m wide having a bed slope of 0.00009 carries water at a depth of 1.4 m . If the channel terminates in an abrupt drop in the bed, what type of flow profile, upstream of the drop, is expected to form? Assume $n=0.016$.
5. Explain gradually varied flow profiles under
practical conditions in detail. 14
6. (a) Explain all three metering flumes for flow
measurement in brief.
(b) A rectangular channel 3 m wide carries a discharge of 1.85 cumecs with a depth of flow 0.50 m . It is to cross a natural drainage and, for this purpose, find out the maximum allowable contraction in the width without increasing the depth of flow in the channel.
7. (a) List the assumptions and derive the dynamic equation of uniformly progressive flow.
(b) What is the deep-water wavelength and the corresponding phase velocity if a waveform has a period of 7 seconds? What will be its wavelength if the depth of water is 30 m ?
8. Write short notes on any four of the following : $4 \times 3 \frac{1}{2}=14$
(a) Choking Condition
(b) Specific Force and Sequent Depth
(c) Hydraulic Bore
(d) Specific Force
(e) H-Profile
