B．Tech．Civil（Construction Management）／
 B．Tech．Civil（Water Resources Engineering）

Term－End Examination

December， 2017
ロロロE？

ET－508（A）：STRUCTURAL DESIGN－I

Time： 3 hours
Maximum Marks ： 70
Note：Attempt any four questions．All questions carry equal marks．Use of code of practice IS ： 456 and scientific calculator is allowed．

1．A rectangular beam 200 mm by 400 mm deep upto the centre of reinforcement is reinforced with $3-20 \mathrm{~mm}$ diameter bars in tension zone at an effective cover of 50 mm ．Determine the depth of neutral axis，lever arm and moment of resistance assuming M 15 mix and Fe 250 grade steel．Use limit state method of design．

$$
7+3 \frac{1}{2}+7=17 \frac{1}{2}
$$

2. Design a rectangular beam by limit state method of design for an effective span of 6.50 m . The superimposed load is $60 \mathrm{kN} / \mathrm{m}$ and the size of the beam is limited to $300 \mathrm{~mm} \times 600 \mathrm{~mm}$ overall. The effective cover to reinforcement is 60 mm . The compressive stress in steel may be taken as $0.87 \mathrm{f}_{\mathrm{y}}$. Use M 20 mix and Fe 415 grade steel. $\quad 17 \frac{1}{2}$
3. The moment of resistance of a rectangular reinforced concrete beam of breadth b (mm) and effective depth $\mathrm{d}(\mathrm{mm})$ is $0.7 \mathrm{bd}^{2} \mathrm{Nmm}$. If the stresses in the outside fibre of concrete and in the steel do not exceed $4.2 \mathrm{~N} / \mathrm{mm}^{2}$ and $140 \mathrm{~N} / \mathrm{mm}^{2}$ respectively, and the modular ratio equals 18 , determine the depth of neutral axis and area of tension steel in terms of b and d. Use working stress method of design.
4. A rectangular beam 300 mm by 600 mm deep is reinforced with $4-25 \mathrm{~mm}$ diameter bars at an effective cover of 50 mm . The shear force at the cross-section is 100 kN . Use M 15 concrete and Fe 415 steel. Design shear reinforcement providing vertical stirrups. Use working stress method of design.
$17 \frac{1}{2}$
5. Design a short circular column to carry an axial load of 1250 kN . Take permissible compressive stress in concrete in direct compression (σ_{cc}) and permissible compressive stress in column bars as $6 \mathrm{~N} / \mathrm{mm}^{2}$ and $130 \mathrm{~N} / \mathrm{mm}^{2}$ respectively. Use working stress method of design. $\quad 17 \frac{1}{2}$
6. Show that in yield line analysis of two-way simply supported square slabs, the collapse load per unit length can be expressed as

$$
\mathrm{W}=\frac{24 \mathrm{M}_{0}}{\mathrm{~L}^{2}}
$$

where all the terms have their usual meanings. $17 \frac{1}{2}$

