No. of Printed Pages: 3

ET-501(B)

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering)

Term-End Examination

00197

December, 2017

ET-501(B): FOUNDATION ENGINEERING

Time: 3 hours

Maximum Marks: 70

Note: Attempt any **five** questions. All questions carry equal marks. Support your answers with neat sketches.

- 1. (a) Explain various methods of site exploration by boring.
 - (b) Describe the principles on which electrical resistivity studies for subsurface exploration are based.
- 2. (a) Describe the various modes of failure of shallow foundations.
 - (b) A strip footing of width 3.0 m is to be founded at a depth of 2.0 m in a well drained sand stratum having the following properties:

$$\phi' = 40$$
, $c = 0$, $r = 20 \text{ kN/m}^3$, $N_c = 95.7$, $N_q = 81.3$ and $N_r = 100.4$

Determine the ultimate bearing capacity using Terzaghi's bearing capacity equation for general shear failure.

7

7

7

7

3.	(a)	Explain the circumstances under which a combined RCC footing is adopted. Explain the features of such a foundation.	7
	(b)	Calculate the eccentricity of a vertical load acting on a footing of size $B \times L$ for $\frac{q_1}{q_2} = 3$ where	
		q ₁ = maximum pressure at the base of the footing,	
		\mathbf{q}_2 = minimum pressure at the base of the footing.	7
4.	(a)	Discuss the various causes for settlement of foundations.	7
	(b)	Explain the effect of footing size on stress zone.	7
5.	(a)	Name the various types of earth retaining structures and explain any two of them.	7
	(b)	A retaining wall 6.0 m high is pushed against a cohesionless backfill. The surface is horizontal. The angle of shearing resistance of soil is 30° and its unit weight is 15 kN/m ³ . Calculate the total Rankine	
	٠	passive resistance.	7
6.	(a)	Explain the need and function of a foundation.	7
	(b)	Describe the design procedure for a well	

foundation.

7. (a) What is Negative Skin Friction? Under what circumstances does it come into play?

7

(b) A wooden pile is being driven with a drop hammer weighing 30 kN and having a free fall of 1.4 m. The penetration in the last blow is 10 mm. Determine the load carrying capacity of the pile according to the Engineering News Formula.

7

8. Differentiate between the following:

 $4 \times 3\frac{1}{9} = 14$

- (a) Open and Piston drive samples
- (b) Shallow and Deep foundations
- (c) Net safe bearing capacity and Allowable bearing pressure
- (d) Active and Passive earth pressures