B．Tech．Civil（Construction Management）／
 B．Tech．Civil（Water Resources Engineering）

Term－End Examination
ロロマアア
December， 2017

ET－302（A）：COMPUTER PROGRAMMING AND NUMERICAL ANALYSIS

Time： 3 hours
Maximum Marks ： 70
Note：Attempt any five questions．All questions carry equal marks．Use of scientific calculator is permitted．

1．（a）Draw a flow chart and write a program in FORTRAN to find the average and standard deviation of the first 50 natural numbers with the help of a DO statement．
（b）Write a subroutine subprogram to multiply two matrices A and B each of order 5×5 using common statement．

2．（a）Write a FORTRAN program that gives the user the option of converting Fahrenheit to Celsius or Celsius to Fahrenheit readings of thermometer．
(b) Write a FORTRAN program to check whether a given number is a prime number or not.
3. (a) Write a FORTRAN program to calculate the area of a circle, area of a triangle, surface area of a sphere and volume of a sphere depending upon user's choice.
(b) Write a FORTRAN program to find the sum of the series

$$
S=1+x+x^{2}+\ldots+x^{n}
$$

4. (a) Solve $3 x+\sin x-e^{x}=0$, correct to 4 decimal places using the Newton-Raphson method.
(b) Solve the following equations using the Gauss Elimination method :

$$
\begin{aligned}
& x+y+z=6 \\
& 3 x+3 y+4 z=20 \\
& 2 x+y+3 z=13
\end{aligned}
$$

5. (a) Evaluate

$$
\int_{0}^{4} e^{x} d x
$$

by Simpson's rule. Compare the approximate value with the exact result.
(b) The distance(s) covered by a car in a given time (t) are given in the following table :

Time (min)	10	12	14	16	18
Distance (km)	12	15	20	27	37

Find the acceleration of the car at $\mathrm{t}=13$ minutes.
6. (a) State Lagrange's mean value theorem. Use it to find an approximate value of $\sqrt[3]{63}$.
(b) Determine the eigenvalues and the corresponding eigenvectors of the following matrix :

$$
A=\left[\begin{array}{ccc}
2 & -1 & -1 \\
3 & -2 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

7. Explain the following :
(a) Round-Off and Truncation Errors
(b) Numerical Integration
(c) Global and Local Variables
(d) Bisection Method
