22900

No. of Printed Pages : 4

ET-301(A)/ET-534(B)

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) Term-End Examination December, 2017

ET-301(A)/ET-534(B) : SYSTEMS METHODS

Time : 3 hours

Maximum Marks: 70

Note : All questions are **compulsory**. Use of calculators is allowed. Each and every notation should be elaborated. Assume any missing data suitably.

- **1.** Answer any *six* of the following questions : $6 \times 5 = 30$
 - (a) What do you understand by Economic System? Describe its elements.
 - (b) What do you understand by Electric Power Generation Systems ? Describe an electric power generation system with the help of a block diagram.
 - (c) A DC motor is the most suitable motor for variable speed drives. State the reasons.
 - (d) Differentiate between physical and non-physical systems by citing at least two examples of each.
 - (e) What are Causal and Non-causal systems ? Cite at least two examples of each.
 - (f) Differentiate between block diagram and interconnection diagram with the help of suitable examples (at least one).
 - (g) What do you understand by model of a system ? Describe in brief, Mathematical model and Physical model with the help of examples.
 - (h) Write the relevance of dynamic programming in decision-making.

ET-301(A)/ET-534(B)

2. Answer any *two* of the following :

2×10=20

(a) Obtain the initial basic feasible solution of a transportation problem using North-West Corner Rule :

Demand Origin	D ₁	D ₂	D ₃	D ₄	Supply
0 ₁	6	4	1	5	14
O ₂	8	9	2	7	16
O ₃	4	3	6	2	5
Requirement	6	10	15	4	

(b) A company has A and B as its products with a profit margin of ₹ 2 and ₹ 1 respectively per unit. The following table indicates the labour, equipment and material to produce each product.

	Requirement per unit			
	Product A	Product B	Total	
Labour (Man hours)	3∙0	2.0	12·0	
Equipment (Machine hours)	1.0	2.3	6.9	
Material (Unit)	1.0	1.4	4 ∙9	

Formulate the linear programming problem specifying the product mix which will maximise profit without exceeding the various levels of resources.

ET-301(A)/ET-534(B)

(c) Maximize $z = 4x_1 + 5x_2$ subject to $3x_1 + 2x_2 \le 6$ $2x_1 + 4x_2 \le 5$ $x_1, x_2 \ge 0$

Use an appropriate linear programming method for solving the problem. Give assumptions.

3. Answer any *two* of the following : $2 \times 10 = 20$

 (a) A company decides to make four sub-assemblies through four contractors. Each contractor is to receive only one sub-assembly. The cost of each sub-assembly is determined by the bids submitted by each contractor and is shown in the following table in hundreds of rupees. Assign the different sub-assemblies to contractors to minimise the total cost.

Contractor Sub-Assembly	1	2	3	4
1	15	13	14	17
2	11	12	15	13
3	13	12	10	11
4	14	17	14	16

ET-301(A)/ET-534(B)

3

P.T.O.

(b) A construction company requires a large amount of gravel and sand. The requirements are 1000 m^3 of coarse gravel, 2000 m^3 of fine gravel, 1000 m^3 of fine sand and 1200 m^3 of coarse sand. There are two pits A and B from which the above material can be obtained. Analysis shows that the material at each pit has the following composition :

Material	Pit A	Pit B	
Coarse gravel	15%	35%	
Fine gravel	20%	40%	
Fine sand	30%	15%	
Coarse sand	35%	10%	

It costs the construction company $\neq 10/m^3$ for material and handling. Formulate the linear programming model.

(c) A vending machine dispenses hot chocolate or coffee. Service time is 30 seconds per cup and is constant. Customers arrive at a mean rate of 80 per hour, and this rate is Poisson distributed.

Determine :

- (i) The average number of customers waiting in line
- (ii) The average time customers spend in the system
- (iii) The average number in the system

ET-301(A)/ET-534(B)

4