No. of Printed Pages: 3

ET-204(A)

B.Tech. Civil (Construction Management)

Term-End Examination

ET-204(A) : MATERIALS SCIENCE

Time : 3 hours

Maximum Marks: 70

- **Note :** Answer any **seven** questions. All questions carry equal marks. Support your answers with neat sketches. Use of calculator is permitted.
- 1. (a) Differentiate between an alloy and a compound, with the help of examples. 5
 - (b) Write down the fracture toughness value for the following materials (in $10^6 \text{ Pa.m}^{1/2}$): 5
 - (i) Low carbon steel
 - (ii) Titanium alloys
 - (iii) Silicon carbide
 - (iv) Nylon
 - (v) Alumina

ET-204(A)

P.T.O.

1

- **2.** Explain the following :
 - (a) Bonding electron
 - (b) Lattice
 - (c) Quantum number
 - (d) Energy level of hydrogen atom
 - (e) Atomic orbitals

3. (a) Fill the given table : (Any *five*)

S. No.	Crystal System	Cell dimension and angles	Bravais Lattice
1	Cubic		
2	Tetragonal		
3	Orthorhombic		
4	Rhombohedral		
5	Hexagonal		
6	Monoclinic		
7	Triclinic		

(b) Determine the packing fraction for BCC structure.

5

- **4.** Draw the phase diagram for : (Any *two*) $2 \times 5 = 10$
 - (a) Pure Iron
 - (b) Water
 - (c) Iron-Carbon

ET-204(A)

5

- 5. Explain the following defects :
 - (a) Interstitial

1

- (b) Edge dislocation
- (c) Mixed dislocation
- (d) Burgers circuit
- (e) Screw dislocation
- Define and explain Stress, Strain and S-S diagram. Explain the Strain-Time diagram for elastic and inelastic behaviour. 5+5
- Write the application of TTT diagram. Explain TTT diagram for Eutectoid steel.
 4+6
- 8. Write short notes on any *two* of the following : 5+5
 - (a) Types of bonding in solids
 - (b) Selection parameters for building materials
 - (c) Superconductivity in metals