No. of Printed Pages: 3

ET-201(B)

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) / B.Tech. (Aerospace Engineering)

December, 2017

ET-201(B): ENGINEERING THERMODYNAMICS

Time: 3 hours

Maximum Marks: 70

Note: Answer any **seven** questions. All questions carry equal marks. Use of steam tables and scientific calculator is permitted.

1. Explain the following terms:

 $4\times2\frac{1}{2}$

- (a) System, Surrounding and Boundary
- (b) Control Volume and Isolated System
- (c) State, Process and Path
- (d) Thermodynamic Equilibrium
- 2. (a) Differentiate between Work and Heat.
 - (b) Energy is a property. Discuss.

 2×5

ET-201(B)

1

P.T.O.

3.	Explain with a neat diagram:		2×5
	(a)	Kelvin-Planck Statement	
	(b)	Clausius Statement	
4.	(a)	Derive the expressions of work done for the following: (i) Reversible constant pressure process (ii) Reversible constant volume process	5
	(b)	Establish the relationship between pressure ratio and temperature ratio in a reversible polytropic process.	
5.	27°C gas,	ne Enthalpy. Enthalpy of air at 1 bar and C is 300·2 kJ/kg. Assuming the air as an ideal determine the specific enthalpy of air at r and 27°C.	10
6.	-	lain the following diagrams for a pure stance: Temperature-Enthalpy Diagram Enthalpy-Entropy Diagram	2×5
7.	R-12 evar cond (a) (b) (c)	Compression work COP	
ET-201(B) 2			

- 8. Derive the minimum work in two-stage compression with intercooling.
- **9.** Write short notes on the following: 2×5
 - (a) Principle of Energy Conservation
 - (b) Brayton Cycle