No. of Printed Pages : 5

ET-105(A)

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) / BTCLEVI / BTMEVI / BTELVI / BTECVI / BTCSVI

Term-End Examination

December, 2017

ET-105(A) : PHYSICS

Time : 3 hours

Maximum Marks : 70

Note: Attempt all questions. Internal choices are provided. Assume missing data suitably, if any. Symbols have their usual meanings. Use of scientific calculator is permitted.

1. (a) Derive the relation $s = s_0 + ut + \frac{1}{2} at^2$. Is this relation valid when acceleration is not uniform ?

OR

A point performs SHM of period T and the equation of motion is given by

$$\mathbf{x} = \mathbf{A} \sin\left(\mathbf{\omega t} + \frac{\pi}{6}\right).$$

After what fraction of T, will the velocity of the point be equal to half of its maximum velocity?

ET-105(A)

1

P.T.O.

4

- (b) A conducting wire is stretched to n times its length. Find the factor by which the resistance has changed by stretching.
- (c) A particle is launched at an angle to the horizontal direction. Find an expression for its path.

OR

Distinguish between free and forced oscillations, giving examples. Sketch amplitude-frequency curve for forced oscillations.

2. (a) A car is moving on a road inclined at an angle θ to the horizontal. Suppose that there is no friction between the road and the tyres of the car. Get an expression for the maximum speed of the car on that road.

OR

Examine if the expression $y(x, t) = (2x - t)^2$ represents a wave. If so, find the velocity of the wave.

- (b) State Lenz's law and explain it with the help of an example. Does it violate conservation of energy?
- (c) Explain the phenomenon of total internal reflection. Calculate the critical angle of incidence if the ray is incident from a medium of refractive index μ_1 to a medium of refractive index μ_2 . Write one application of this phenomenon.

ET-105(A)

2

OR

4

4

4

6

4

Standing on a pavement you hear a siren of frequency 612 Hz from an ambulance. When the ambulance recedes away, you hear the siren of frequency 544 Hz. What is the speed of the ambulance ? What is the frequency of the siren ? (Velocity of sound = 340 m/s)

3. (a) In a Young's experiment, the aperture to screen distance is 3 m and the wavelength is 500 nm. It is desired to have a fringe spacing of 1 mm. Find the slit separation and angular separation of the first minima for the above arrangement.

OR

Show that the kinetic energy of a system of particles may be written as

$$K_{E} = \frac{1}{2} MV_{CM}^{2} + \frac{1}{2} \sum_{i} m_{i}v_{i}^{2}$$

where m_i is the mass of the ith particle and v_i is its velocity with respect to the centre of mass.

 (b) Explain the phenomenon of beats in sound. Two tuning forks produce progressive waves given by

 $Y_1 = 4 \sin 500 \pi t$ and $Y_2 = 2 \sin 506 \pi t$.

What is the number of beats produced per minute?

P.T.O.

4

6

6

(c) Define displacement vector, speed and velocity of a particle. How are the three related to one another ?

OR

Find the capacity of a parallel plate capacitor of area of cross-section A and separation between the plates as d.

4

4

4

4

6

4

 (a) State Huygens principle. On the basis of this principle prove the laws of reflection.

OR

Find the weight of a person on the top and the bottom of a vertical circular track.

- (b) A negative point charge is brought near an isolated conducting sphere. Sketch the electric field lines around the sphere. Explain the process.
- (c) Given the time period of the moon as 27.3 days and its distance from the Earth as 60 Earth radii, find the time period of a satellite at 1/5 Earth radius from the surface of the Earth. State Kirchhoff's laws and establish that for a balanced Wheatstone bridge $R_1/R_2 = R_3/R_4$.

ET-105(A)

5. (a) A diffraction grating has 4200 lines per centimetre. Calculate the angular separation for the two wavelengths of a sodium lamp 5890 Å and 5896 Å in the second order.

OR

A train is moving at a speed of 10 m/s when the driver applies brakes which provide deceleration of $1/20 \text{ m/s}^2$ for a distance of 750 m. How much time does the train take to travel this distance ?

- (b) Two SHMs of the same amplitude and frequency are travelling on a string in opposite directions. Show that the resulting wave is a stationary wave. Sketch this wave.
 - en this wave.

6

4

4

4

(c) Two identical springs of spring constant k are connected as shown.

Find the time period of small oscillations of the system.

OR

Find the electric field at a point on the equatorial line of a dipole of moment \overrightarrow{p} . 4